The aim of this study was to evaluate the anti-trypanosomal effect of treatment with 3'-deoxyadenosine (cordycepin) combined with deoxycoformycin (pentostatin: inhibitor of the enzyme adenosine deaminase) in vitro by using mice experimentally infected with Trypanosoma evansi. In vitro, a dose-dependent trypanocidal effect of cordycepin was observed against the parasite. In the in vivo trials, the two drugs were used individually and in combination of different doses. The drugs when used individually had no curative effect on infected mice. However, the combination of cordycepin (2 mg kg-1) and pentostatin (2 mg kg-1) was 100% effective in the T. evansi-infected groups. There was an increase in levels of some biochemical parameters, especially on liver enzymes, which were accompanied by histological lesions in the liver and kidneys. Based on these results we conclude that treatment using the combination of 3'-deoxyadenosine with deoxycoformycin has a curative effect on mice infected with T. evansi. However, the therapeutic protocol tested led to liver and kidney damage, manifested by hepatotoxicity and nephrotoxicity.
A simple method for using sound pulses to harvest protein crystals from a commercially available crystallization plate is described. Crystals can be grown using conventional vapor-diffusion methods and then individually harvested or serially combined with a chemical library such as a fragment library.
Improvements needed for automated crystallography include crystal detection and crystal harvesting. A technique that uses acoustic droplet ejection to harvest crystals was previously reported. Here a method is described for using the same acoustic instrument to detect protein crystals and to monitor crystal growth. Acoustic pulses were used to monitor the progress of crystallization trials and to detect the presence and location of protein crystals. Crystals were detected, and crystallization was monitored in aqueous solutions and in lipidic cubic phase. Using a commercially available acoustic instrument, crystals measuring ~150 µm or larger were readily detected. Simple laboratory techniques were used to increase the sensitivity to 50 µm by suspending the crystals away from the plastic surface of the crystallization plate. This increased the sensitivity by separating the strong signal generated by the plate bottom that can mask the signal from small protein crystals. It is possible to further boost the acoustic reflection from small crystals by reducing the wavelength of the incident sound pulse, but our current instrumentation does not allow this option. In the future, commercially available sound-emitting transducers with a characteristic frequency near 300 MHz should detect and monitor the growth of individual 3 µm crystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.