Absolute densities of chlorine atoms were determined in an inductively coupled plasma in pure chlorine gas as a function of gas pressure and RF power by two-photon laser-induced fluorescence. A new technique is proposed to put the relative two-photon laser-induced fluorescence (TALIF) measurements on an absolute scale, based on photolysis of Cl2 gas (without plasma) with a tripled Nd : YAG laser at 355 nm. Because the dissociation cross-section and photo-dissociation laser beam energy density are well known, the absolute densities can be determined with high accuracy. We find that the ratio of the Cl atom density normalized to the Cl2 gas density without plasma
at the reactor centre increases with RF power and decreases with gas pressure, reaching 20% at 2 mTorr 500 WRF.
We present an extended experimental study of the absolute yield of Kα x-ray source (17.48 keV) produced by interaction of an ultrahigh intensity femtosecond laser with solid Mo target for temporal contrast ratios in the range of 1.7 × 107–3.3 × 109 and on three decades of intensity 1016–1019 W/cm². We demonstrate that for intensity I ≥ 2 × 1018 W/cm² Kα x-ray emission is independent of the value of contrast ratio. In addition, no saturation of the Kα photon number is measured and a value of ~2 × 1010 photons/sr/s is obtained at 10 Hz and I ~1019 W/cm². Furthermore, Kα energy conversion efficiency reaches the same high plateau equal to ~2 × 10−4 at I = 1019 W/cm² for all the studied contrast ratios. This original result suggests that relativistic J × B heating becomes dominant in these operating conditions which is supposed to be insensitive to the electron density gradient scale length L/λ. Finally, an additional experimental study performed by changing the angle of incidence of the laser beam onto the solid target highlights a clear signature of the interplay between collisionless absorption mechanisms depending on the contrast ratio and intensity.
Betatron x-ray sources from laser-plasma accelerators combine compactness, high peak brightness, femtosecond pulse duration and broadband spectrum. However, when produced with Terawatt class lasers, their energy was so far restricted to a few kilo-electronvolt (keV), limiting the range of possible applications. Here we present a simple method to increase the energy and the flux by an order of magnitude without increasing the laser energy. The orbits of the relativistic electrons emitting the radiation were controlled using density tailored plasmas so that the efficiency of the Betatron source is significantly improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.