Polyethoxylated nonylphenols, with different ethoxylation degrees (NPEOx), are incorporated into many commercial and industrial products such as detergents, domestic disinfectants, emulsifiers, cosmetics, and pesticides. However, the toxic effects exerted by their degradation products, which are persistent in natural environments, have been demonstrated in several animal and invertebrate aquatic species. Therefore, it seems appropriate to look for indigenous bacteria capable of degrading native NPEOx and its derivatives. In this paper, the isolation of five bacterial strains, capable of using NPEO15, as unique carbon source, is described. The most efficient NPEO15 degrader bacterial strains were identified as Pseudomonas fluorescens (strain Yas2) and Klebsiella pneumoniae (strain Yas1). Maximal growth rates were reached at pH 8, 27°C in a 5% NPEO15 medium. The NPEO15 degradation extension, followed by viscometry assays, reached 65% after 54.5 h and 134 h incubation times, while the COD values decreased by 95% and 85% after 24 h for the Yas1 and Yas2 systems, respectively. The BOD was reduced by 99% and 99.9% levels in 24 h and 48 h incubations. The viscosity data indicated that the NPEO15 biodegradation by Yas2 follows first-order kinetics. Kinetic rate constant (k) and half life time (τ) for this biotransformation were estimated to be 0.0072 h−1 and 96.3 h, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.