The random partial differential equations have a wide range of physical, chemical, and biological applications. The finite difference method offers an attractively simple approximations for these equations. In this paper, the finite difference technique is performed in order to find an approximation solutions for the linear one dimensional convection-diffusion equation with random variable coefficient. We study the consistency and stability of the finite difference scheme under mean square sense. A statistical measure such as mean for the numerical approximation, and the exact solution based on different statistical distributions is computed.
In this paper, the solutions of Cauchy problems for the stochastic advection and stochastic diffusion equations are obtained using the finite difference method. In the case when the flow velocity is a function of stochastic flow velocity and also, the diffusion coefficient in the stochastic heat equation is a function of stochastic diffusion coefficient, the consistency and stability of the finite difference scheme we are used need to be performed under mean square calculus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.