ABSTRACTThis work consists of the detection and quantification of the concentration levels of radioactive gas radon-222 (222Rn) of natural origin, as well as the determination of the critical points and the estimation of the effective dose absorbed by the tourists and guides inside the Jumandy cavern in Napo, Ecuador. According to the feasibility map of uranium of Ecuador, the study area is located in one of the top-priority areas for obtaining uranium, suggesting possible radioactivity in this unstudied region. The measurements were carried out from July to October of 2017, in three different monitoring points inside the cavern. The average radon concentrations measured in the cavern exceeded the maximum recommended environmental level by a factor of 28, and the effective dose absorbed by the guides exceeded the recommended maximum by a f actor of 10. Meteorological parameters such as temperature and relative humidity have an impact on the 222Rn concentrations in different parts of the cave.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.