We studied the microbial diversity of benthic cyanobacterial mats inhabiting a heavily polluted site in a coastal stream (Wadi Gaza) and monitored the microbial community response induced by exposure to and degradation of four model petroleum compounds in the laboratory. Phormidium-and Oscillatoria-like cyanobacterial morphotypes were dominant in the field. Bacteria belonging to different groups, mainly the Cytophaga-Flavobacterium-Bacteriodes group, the ␥ and  subclasses of the class Proteobacteria, and the green nonsulfur bacteria, were also detected. In slurry experiments, these communities efficiently degraded phenanthrene and dibenzothiophene completely in 7 days both in the light and in the dark. n-Octadecane and pristane were degraded to 25 and 34% of their original levels, respectively, within 7 days, but there was no further degradation until 40 days. Both cyanobacterial and bacterial communities exhibited noticeable changes concomitant with degradation of the compounds. The populations enriched by exposure to petroleum compounds included a cyanobacterium affiliated phylogenetically with Halomicronema. Bacteria enriched both in the light and in the dark, but not bacteria enriched in any of the controls, belonged to the newly described Holophaga-Geothrix-Acidobacterium phylum. In addition, another bacterial population, found to be a member of green nonsulfur bacteria, was detected only in the bacteria treated in the light. All or some of the populations may play a significant role in metabolizing the petroleum compounds. We concluded that the microbial mats from Wadi Gaza are rich in microorganisms with high biodegradative potential.
The use of commercially available formulations of alachlor has resulted in a serious environmental problem due to its leaching and migration to water sources. The objective of this study was to develop organo-clay based formulations that can significantly reduce leaching and improve weed control efficacy. We adsorbed the herbicide to montmorillonite clay particles whose surfaces were modified from hydrophilic to hydrophobic by preadsorbing to the clay an organic cation, such as benzyltrimethylammonium (BTMA) to reduce release of the herbicide into the soil. Alachlor adsorption was determined by gas chromatography. Organo-clay complexes of 0.5 mmol BTMA/g of clay gave larger adsorbed amounts and better formulations of alachlor as compared to BTMA preadsorbed up to the cation exchange capacity (0.8 mmol/g), whereas formulations without organic cations were not effective and gave little adsorption of the herbicide. The use of Fourier transform infrared spectroscopy showed that the optimal formulation also yielded the largest shifts of the stretching vibrations of the phenyl ring. The organo-clay formulations yielded slow release of the herbicide to the environment, maintaining the herbicidal activity in the top soil as measured by a bioassay using green foxtail and wheat as test plants. Laboratory and field experiments showed improved weed control at significantly reduced applied rate when alachlor was applied as organoclay formulations.
This study aimed to optimize organo-clay formulations for reduction of leaching of the herbicides alachlor, metolachlor, and norflurazon, which include a phenyl ring in the structure. The adsorbed amounts of herbicides increased severalfold when montmorillonite was preadsorbed by an organic cation; benzyltrimethylammonium (BTMA) was more effective than benzyltriethylammonium (BTEA). Fourier transform infrared studies indicated interactions between alachlor molecules and adsorbed BTMA. The adsorption affinity of the herbicides increased with BTEA loading up to the cation exchange capacity (CEC) of montmorillonite but reached a maximum at a BTMA loading of 5/8 of the CEC. The enhanced adsorbed amounts of herbicides are mainly due to interactions between the phenyl rings of herbicide molecules and organic cations, which are favored with the smaller cation, BTMA. BTMA preadsorbed on the clay up to the CEC forms a fraction (14-18%) of charged dimers so that less phenyl rings are available for interacting with herbicide molecules. This effect is small for preloading by BTEA, so that the amounts adsorbed increase with the degree of preloading. Thus, optimization of claybased herbicide formulations requires a selection of structurally compatible organic cations preadsorbed on the clay at optimal coverage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.