The effect(s) of SO 2 on the two types of active sites on Cu-SSZ-13 NH 3 −SCR catalysts, Z2Cu and ZCuOH, were investigated. Two Cu-SSZ-13 catalysts with Si:Al ratios of 6 and 30 were synthesized, and they provide very different distributions of these two active sites. Inductively coupled plasma optical emission spectroscopy (ICP-OES), H 2 temperature-programmed reduction (H 2 -TPR), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) were utilized to characterize catalyst samples and quantify the amounts of total Cu, Z2Cu and ZCuOH. In situ DRIFTS results show that Z2Cu and ZCuOH responses to low-temperature (<200 °C) SO 2 poisoning were site-dependent. Results of SO 2 and SO 2 + NH 3 temperatureprogrammed desorption (TPD) and DRIFTS experiments, supplemented with DFT calculations, revealed that the different observed responses correspond to different sulfur intermediates that form. On Z2Cu sites, SO 2 only adsorbs when it is cofed with NH 3 via formation of ammonium sulfate, with its fingerprint TPD feature at 380 °C. However, low-temperature interaction between SO 2 and ZCuOH leads to copper bisulfite species formation, which can be further oxidized to form copper bisulfate with increasing temperature. In terms of low-temperature SCR functionality, the activity of both Cu-SSZ-13 samples were found to be significantly inhibited by SO 2 . However, in terms of regeneration (i.e., desulfation) behavior, Cu-SSZ-13 with a Si:Al = 30 (higher ZCuOH compared to Z2Cu) seemed to require higher desulfation temperatures (>550 °C). Therefore, compared with Z2Cu, ZCuOH sites are more susceptible to severe low-temperature SO 2 poisoning because of the formation of more stable bisulfite and ultimately bisulfate species.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
SO2 poisoning of NH3-SCR over Cu-SAPO-34 was studied,
specifically to evaluate the forms/states of stored S and the effect
of such species on low-temperature NO
x
reduction activity. Two primary sulfur species types were observed
and were found to be interchangeable depending on whether NH3 was available or not. In one case both ammonium sulfate and Cu sulfate
species could be present and in the other only Cu sulfate species.
Cu sulfate, in the absence of ammonia, was found in three different
states/forms, identified by three desorption features during temperature-programmed
desorption (TPD) experiments. Diffuse reflectance infrared Fourier
transform spectroscopy (DRIFTS) of NO adsorption was used to investigate
the nature and accessibility of the Cu species before and after sulfate
formation, without the interference of ammonium sulfate; these data
revealed that the Cu2+ inside the six-membered rings was
completely blocked by sulfur and that the nature of the [CuOH]+ close to the eight-membered ring changed. In comparing the
effect of different forms of S on low-temperature NO
x
reduction activity, ammonium sulfate had the greatest impact
on performance loss. Interestingly, the results also show that ammonium
sulfate can actually play a role as a SCR reactant, likely analogous
to the mechanism involving ammonium nitrate. Ammonium sulfate decomposes
at temperatures as low as ∼300–350 °C, whereas
higher temperatures (>480 °C) were needed to desorb other
S-containing species. This appears favorable, as NH3 can
react with preadsorbed sulfur on the catalyst to form ammonium sulfate,
which decomposes at lower temperatures in comparison to the other
sulfate forms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.