Intracellular parasitism by bacterial pathogens is a complex, multi-factorial process that has been exploited successfully by a wide variety of organisms. Members of the Order Chlamydiales are obligate intracellular bacteria that are transmitted as metabolically inactive particles and must differentiate, replicate, and re-differentiate within the host cell to carry out their life cycle. Understanding the developmental cycle has been greatly advanced by the availability of complete genome sequences, DNA microarrays, and advanced cell biology techniques. Measuring transcriptional changes throughout the cycle has allowed investigators to determine the nature of the temporal gene expression changes required for bacterial growth and development.
SummaryThe developmentally regulated intracellular pathogen Chlamydia pneumoniae is a natural tryptophan auxotroph. These organisms survive tryptophan starvation induced by host cell activation with IFNg by blocking maturation to the infectious form. In most bacteria, the stringent response is induced during amino acid starvation to promote survival. However, the response of obligate intracellular pathogens, which are predicted to lack stringent responses to amino acid starvation, is poorly characterized. Chlamydial transcription and translation were analysed during IFNg-mediated tryptophan starvation using genomic normalization methods, and the data revealed the novel findings that: (i) global chlamydial transcription was upregulated; and (ii) protein synthesis was dramatically reduced. These results indicate a dysregulation of developmental gene expression and an uncoupling of transcription from translation. These observations represent an alternative survival strategy for host-adapted obligate intracellular bacterial pathogens that have lost the genes for stringent control during reductive evolution.
We previously demonstrated that plasmid-deficient Chlamydia muridarum retains the ability to infect the murine genital tract but does not elicit oviduct pathology because it fails to activate Toll-like receptor 2 (TLR2). We derived a plasmid-cured derivative of the human genital isolate Chlamydia trachomatis D/UW-3/Cx, strain CTD153, which also fails to activate TLR2, indicating this virulence phenotype is associated with plasmid loss in both C. trachomatis and C. muridarum. As observed with plasmid-deficient C. muridarum, CTD153 displayed impaired accumulation of glycogen within inclusions. Transcriptional profiling of the plasmid-deficient strains by using custom microarrays identified a conserved group of chromosomal loci, the expression of which was similarly controlled in plasmid-deficient C. muridarum strains CM972 and CM3.1 and plasmid-deficient C. trachomatis CTD153. However, although expression of glycogen synthase, encoded by glgA, was greatly reduced in CTD153, it was unaltered in plasmid-deficient C. muridarum strains. Thus, additional plasmid-associated factors are required for glycogen accumulation by this chlamydial species. Furthermore, in C. trachomatis, glgA and other plasmid-responsive chromosomal loci (PRCLs) were transcriptionally responsive to glucose limitation, indicating that additional regulatory elements may be involved in the coordinated expression of these candidate virulence effectors. Glucose-limited C. trachomatis displayed reduced TLR2 stimulation in an in vitro assay. During human chlamydial infection, glucose limitation may decrease chlamydial virulence through its effects on plasmid-responsive chromosomal genes.
Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.