The dependently of the electrical grid is critical key point to safety of the nuclear research reactor (NRR) operation. This paper provides an optimization approach relying on optimal allocation of UPFC device to obtain higher electrical power quality of such nuclear facilities. The particle swarm optimization (PSO) technique was used to address the optimal UPFC allocation problem. The suggested approach is applied to the IEEE 33-bus test system, and results reveal that the suggested PSO is more efficient in minimizing total power losses and enhancing voltage profile using only one of UPFC device. The results show the technique is good method in this case.
UPFC device is discussed in this paper along with their models and functions. Moreover, the suggested and the complementally approaches in the current research study. As a result, the methods are divided into three divisions, which are sensitivity analysis based methods, conventional optimization based methods and artificial intelligence (AI) based methods. In addition, artificial intelligence based methods plays a major role in reducing the search space region. However, to optimize the resulting benefits, the placement, sizing and parameter of UPFC device should be determined. This paper presents and discusses in depth an overall review of the last two decades’ studies, including proposed and comparative methods and strategies, approaches, objective functions, UPFC device tools utilized, limitations, contingency situations and all parameters evaluated and simulated. This paper also provides an analysis of UPFC’s various benefits and uses of power flow studies, such as, power loss mitigation, system load ability improvement, power system security, enhancement of voltage stability, cost of generation and UPFC installation and utilizing specific optimization techniques. Therefore, a more weighted overview of the proposed method is presented focused on artificial intelligence optimization methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.