Keywords:Friction stir welding FSW tool design Al-Li alloys Welding speed 2024 aluminum alloy Tensile properties DIC A B S T R A C T Different tool geometries were used to investigate the joining of aluminum alloys (AA2198 to AA2024) by friction stir welding (FSW). Three shoulder profiles (flat, raised spiral, and raised fan) and five different pin profiles (cone, half threaded cylindrical, straight cylindrical, tapered cylindrical and square) were selected. Preliminary investigations were conducted by moving the tool into a seamless sheet made of the AA2024-T3 in order to select the tools that produce defect-free joints. Preliminary investigations showed the raised fan shoulder profile helps the material flow from the edge of shoulder to the pin creating a smooth surface finish with no flash in comparison with flat and raised spiral shoulder profiles. Pins with a minimum diameter equal to half the plate thickness produced lack of penetration (LOP) defects, while increasing minimum pin diameter to the plate thickness eliminates the LOP defects. Half threaded cylindrical pin produced tunneling defect, whereas defect free joint made by straight cylindrical, tapered cylindrical and cubic pin profiles. So they were selected for joining AA2024 to AA2198. Fracture locations of different joint variants were observed the vicinity of the thermomechanical affected zone (TMAZ) of AA2198-T3 alloy, and in the nugget on the AA2198-T3 side which have the minimum hardness and highest strain localization as confirmed by hardness maps and digital image coronation (DIC). Higher measured temperature than dissolution temperature of AA2198 main strengthening precipitates could be the reason of low hardness and fracture in TMAZ and center of nugget. Furthermore a raised fan shoulder with a tapered cylindrical pin produced highest elongation and yield strength and it was selected as the best candidate for optimization of the welding parameters. It was found that higher rotational and traverse speeds enhance the formation of tunneling and kissing bond defects, suggesting that longer pins have to be used for higher traverse speeds. Welding speed 750 rpm with 450 mm min −1 could create joint with highest yield strength.
The fatigue properties of gas metal arc welded and friction stir welded assemblies made of aluminum alloy AA6061-T6 structural extrusions were examined. The mechanical performances of welded joints were obtained using uniaxial tensile and force-controlled constant amplitude axial fatigue tests. Microstructural and fractographic analyses were conducted to document the influence of the process on microstructure evolution, fatigue crack initiation sites, and propagation mechanisms leading to the final rupture of the assemblies. Microhardness measurements and digital image correlation techniques paired with interrupted tensile tests were also used to investigate the complex heterogeneous local mechanical behavior and to highlight the fact that the crack initiation mechanism was driven by the microstructural state of the joint as well as by the structuralcontact-fretting occurring at the notch root. The corresponding fatigue strengths at 2 million and 10 million cycles were evaluated respectively at 10% and 20% higher for friction stir welded assemblies versus gas metal arc welded assemblies. Fractographic analyses revealed that the fatigue cracks were initiated from microstructural features (pores for the GMAW configuration and banded structure on the crown side for the FSW configuration), or from large sub-surface grains in a shallow region below the structural-contact-fretting occurring at the notch root.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.