High resolution cervical auscultation is a very promising noninvasive method for dysphagia screening and aspiration detection, as it does not involve the use of harmful ionizing radiation approaches. Automatic extraction of swallowing events in cervical auscultation is a key step for swallowing analysis to be clinically effective. Using time-varying spectral estimation of swallowing signals and deep feed forward neural networks, we propose an automatic segmentation algorithm for swallowing accelerometry and sounds that works directly on the raw swallowing signals in an online fashion. The algorithm was validated qualitatively and quantitatively using the swallowing data collected from 248 patients, yielding over 3000 swallows manually labeled by experienced speech language pathologists. With a detection accuracy that exceeded 95%, the algorithm has shown superior performance in comparison to the existing algorithms and demonstrated its generalizability when tested over 76 completely unseen swallows from a different population. The proposed method is not only of great importance to any subsequent swallowing signal analysis steps, but also provides an evidence that such signals can capture the physiological signature of the swallowing process.Electronic human activity monitoring devices and wearable technology have evolved in the past decade from simple macrodetection of gross events such as the number of steps taken during a walk around the block, to the detection of micro-events that exist within each gross event 1 . As a result, the quantity of data generated by these devices has exponentially increased along with the clinical questions arising with this data challenge 2 . Therefore, efforts to automate signal analysis are receiving more attention. Any systematic analysis of signals requires an important first step in which individual signal events are demarcated or segmented from one another before detailed analysis of signal components can be performed. This necessitates the development of robust automatic event detection methods to reduce the number of manual steps in signal analysis, mitigating human error and guaranteeing consistent detection criteria 3 . Event extraction algorithms have been introduced in many applications including speech analysis 4 , heart sounds segmentation 5 , brain signals analysis 6 , and swallowing activity analysis 3,7 . Many of these algorithms relied on multi-channel data to improve detection quality 8,9 .All these applications share a common need of accurately defining the temporal borders (onset and offset) of certain events in order to be used for further processing and analysis. Particularly, we are interested in automated identification of vibratory and acoustic signals demarcating individual swallows using accelerometers and microphones 3 . Such automatic segmentation algorithms are critical for many applications that rely on swallowing sounds and vibrations which have been suggested as alternative bedside tools for dysphagia screening [10][11][12][13][14][15][16][17][18] ...
Upper esophageal sphincter is an important anatomical landmark of the swallowing process commonly observed through the kinematic analysis of radiographic examinations that are vulnerable to subjectivity and clinical feasibility issues. Acting as the doorway of esophagus, upper esophageal sphincter allows the transition of ingested materials from pharyngeal into esophageal stages of swallowing and a reduced duration of opening can lead to penetration/aspiration and/or pharyngeal residue. Therefore, in this study we consider a non-invasive high resolution cervical auscultation-based screening tool to approximate the human ratings of upper esophageal sphincter opening and closure. Swallows were collected from 116 patients and a deep neural network was trained to produce a mask that demarcates the duration of upper esophageal sphincter opening. The proposed method achieved more than 90% accuracy and similar values of sensitivity and specificity when compared to human ratings even when tested over swallows from an independent clinical experiment. Moreover, the predicted opening and closure moments surprisingly fell within an inter-human comparable error of their human rated counterparts which demonstrates the clinical significance of high resolution cervical auscultation in replacing ionizing radiation-based evaluation of swallowing kinematics.
Hyoid bone movement is an important physiological event during swallowing that contributes to normal swallowing function. In order to determine the adequate hyoid bone movement, clinicians conduct an X-ray videofluoroscopic swallowing study, which even though it is the gold-standard technique, has limitations such as radiation exposure and cost. Here, we demonstrated the ability to track the hyoid bone movement using a non-invasive accelerometry sensor attached to the surface of the human neck. Specifically, deep neural networks were used to mathematically describe the relationship between hyoid bone movement and sensor signals. Training and validation of the system were conducted on a dataset of 400 swallows from 114 patients. Our experiments indicated the computer-aided hyoid bone movement prediction has a promising performance when compared with human experts’ judgements, revealing that the universal pattern of the hyoid bone movement is acquirable by the highly nonlinear algorithm. Such a sensor-supported strategy offers an alternative and widely available method for online hyoid bone movement tracking without any radiation side-effects and provides a pronounced and flexible approach for identifying dysphagia and other swallowing disorders.
Carbon nanotube-based field-effect transistors (NTFETs) are ideal sensor devices as they provide rich information regarding carbon nanotube interactions with target analytes and have potential for miniaturization in diverse applications in medical, safety, environmental, and energy sectors. Herein, we investigate chemical detection with cross-sensitive NTFETs sensor arrays comprised of metal nanoparticle-decorated single-walled carbon nanotubes (SWCNTs). By combining analysis of NTFET device characteristics with supervised machine-learning algorithms, we have successfully discriminated among five selected purine compounds, adenine, guanine, xanthine, uric acid, and caffeine. Interactions of purine compounds with metal nanoparticle-decorated SWCNTs were corroborated by density functional theory calculations. Furthermore, by testing a variety of prepared as well as commercial solutions with and without caffeine, our approach accurately discerns the presence of caffeine in 95% of the samples with 48 features using a linear discriminant analysis and in 93.4% of the samples with only 11 features when using a support vector machine analysis. We also performed recursive feature elimination and identified three NTFET parameters, transconductance, threshold voltage, and minimum conductance, as the most crucial features to analyte prediction accuracy.
Millions of people across the globe suffer from swallowing difficulties, known as dysphagia, which can lead to malnutrition, pneumonia, and even death. Swallowing cervical auscultation, which has been suggested as a noninvasive screening method for dysphagia, has not been associated yet with any physical events. In this paper, we have compared the hyoid bone displacement extracted from the videofluoroscopy images of 31 swallows to the signal features extracted from the cervical auscultation recordings captured with a tri-axial accelerometer and a microphone. First, the vertical displacement of the anterior part of the hyoid bone is related to the entropy rate of the superior–inferior swallowing vibrations and to the kurtosis of the swallowing sounds. Second, the vertical displacement of the posterior part of the hyoid bone is related to the bandwidth of the medial–lateral swallowing vibrations. Third, the horizontal displacements of the posterior and anterior parts of the hyoid bone are related to the spectral centroid of the superior–inferior swallowing vibrations and to the peak frequency of the medial–lateral swallowing vibrations, respectively. At last, the airway protection scores and the command characteristics were associated with the vertical and horizontal displacements, respectively, of the posterior part of the hyoid bone. Additional associations between the patients’ characteristics and auscultations’ signals were also observed. The hyoid bone maximal displacement is a cause of swallowing vibrations and sounds. High-resolution cervical auscultation may offer a noninvasive alternative for dysphagia screening and additional diagnostic information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.