The tumor microenvironment presents with altered extracellular matrix (ECM) and stroma composition, which may affect treatment efficacy and contribute to tissue stiffness. Ultrasound (US) elastography can visualize and quantify tissue stiffness noninvasively. However, the contributions of ECM and stromal components to stiffness are poorly understood. We therefore set out to quantify ECM and stroma density and their relation to tumor stiffness. A modified clinical ultrasound system was used to measure tumor stiffness and perfusion during tumor growth in preclinical tumor models. measurements were compared with collagen mass spectroscopy and automatic analysis of matrix and stromal markers derived from immunofluorescence images. US elastography estimates of tumor stiffness were positively correlated with tumor volume in collagen and myofibroblast-rich tumors, while no correlations were found for tumors with low collagen and myofibroblast content. US elastography measurements were strongly correlated with mechanical testing and mass spectroscopy-based measurements of total collagen and immature collagen crosslinks. Registration of ultrasound and confocal microscopy data showed strong correlations between blood vessel density and T-cell density in syngeneic tumors, while no correlations were found for genetic tumor models. In contrast to collagen density, which was positively correlated with stiffness, no significant correlations were observed for hyaluronic acid density. Finally, localized delivery of collagenase led to a significant reduction in tumor stiffness without changes in perfusion 24 hours after treatment. US elastography can be used as a potential biomarker to assess changes in the tumor microenvironment, particularly changes affecting the ECM. .
Rotator cuff tears are common and often repaired surgically, but post-operative repair tissue healing, and shoulder function can be unpredictable. Tear chronicity is believed to influence clinical outcomes, but conventional clinical approaches for assessing tear chronicity are subjective. Shear wave elastography (SWE) is a promising technique for assessing soft tissue via estimates of shear wave speed (SWS), but this technique has not been used extensively on the rotator cuff. Specifically, the effects of age and pathology on rotator cuff SWS are not well known. The objectives of this study were to assess the association between SWS and age in healthy, asymptomatic subjects, and to compare measures of SWS between patients with a rotator cuff tear and healthy, asymptomatic subjects. SWE images of the supraspinatus muscle and intramuscular tendon were acquired from 19 asymptomatic subjects and 11 patients with a rotator cuff tear. Images were acquired with the supraspinatus under passive and active (i.e., minimal activation) conditions. Mean SWS was positively associated with age in the supraspinatus muscle and tendon under passive and active conditions (p ≤ 0.049). Compared to asymptomatic subjects, patients had a lower mean SWS in their muscle and tendon under active conditions (p ≤ 0.024), but no differences were detected under passive conditions (p ≥ 0.783). These findings identify the influences of age and pathology on SWS in the rotator cuff. These preliminary findings are an important step toward evaluating the clinical utility of SWE for assessing rotator cuff pathology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:282-288, 2018.
Accurate characterization of tissue pathologies using ultrasonic attenuation is strongly dependent on the accuracy of the algorithm that is used to obtain the attenuation coefficient estimates. In this paper, computer simulations were used to compare the accuracy and the precision of the three methods that are commonly used to estimate the local ultrasonic attenuation within a region of interest (ROI) in tissue; namely, the spectral log difference method, the spectral difference method, and the hybrid method. The effects of the inhomgeneities within the ROI on the accuracy of the three algorithms were studied, and the optimal ROI size (the number of independent echoes laterally and the number of pulse lengths axially) was quantified for each method. The three algorithms were tested for when the ROI was homogeneous, the ROI had variations in scatterer number density, and the ROI had variations in effective scatterer size. The results showed that when the ROI was homogeneous, the spectral difference method had the highest accuracy and precision followed by the spectral log difference method and the hybrid method, respectively. Also, when the scatterer number density varied, the spectral difference method completely failed, while the log difference method and hybrid method still gave good results. Lastly, when the scatterer size varied, all of the methods failed.
Premature delivery is the leading cause of infant mortality in the United States. Currently, premature delivery cannot be prevented and new treatments are difficult to develop due to the inability to diagnose symptoms prior to uterine contractions. Cervical ripening is a long period that precedes the active phase of uterine contractions and cervical dilation. The changes in the microstructure of the cervix during cervical ripening suggest that the ultrasonic attenuation should decrease. The objective of this study is to use the reference phantom algorithm to estimate the ultrasonic attenuation in the cervix of pregnant human patients. Prior to applying the algorithm to in vivo human data, two homogeneous phantoms with known attenuation coefficients were used to validate the algorithm and to find the length and the width of the region of interest (ROI) that achieves the smallest error in the attenuation coefficient estimates. In the phantom data, we found that the errors in the attenuation coefficients estimates are less than 12% for ROIs that contain 40 wavelengths or more axially and 30 echo lines or more laterally. The reference phantom algorithm was then used to obtain attenuation maps of the echoes from two human pregnant cervices at different gestational ages. It was observed that the mean of the attenuation coefficient estimates in the cervix of the patient at a more advanced gestational age is smaller than the mean of the attenuation coefficient estimates in the cervix of the patient at an earlier gestational age which suggests that ultrasonic attenuation decreases with increasing gestational age. We also observed a large variance between the attenuation coefficient estimates in the different regions of the cervix due to the natural variation in tissue microstructures across the cervix. The preliminary results indicate that the algorithm could potentially provide an important diagnostic tool for diagnosing the risk of premature delivery.
Objectives-The purpose of this study was to demonstrate the clinical feasibility of an integrated reference phantom method for quantitative ultrasound by creating an ultrasound-derived fat fraction (UDFF) tool. This tool was evaluated with respect to its diagnostic performance as a biomarker for assessing histologic hepatic steatosis and its agreement with the magnetic resonance imaging (MRI) proton density fat fraction (PDFF). Methods-Adults (n = 101) with known or suspected nonalcoholic fatty liver disease consented to participate in this prospective cross-sectional study. All patients underwent MRI-PDFF and ultrasound scans, whereas 90 underwent liver biopsy. A linear least-squares analysis used the attenuation coefficient and backscatter coefficient to create the UDFF model for predicting MRI-PDFF. Results-The area under the receiver operating characteristic curve values were 0.94 (95% confidence interval [CI], 0.85-0.98) for histologic steatosis grade 0 (n = 6) versus 1 or higher (n = 84), 0.88 (95% CI, 0.8-0.94) for grade 1 or lower (n = 45) versus 2 or higher (n = 45), and 0.83 (95% CI, 0.73-0.9) for grade 2 or lower (n = 78) versus 3 (n = 12). The Pearson correlation coefficient between UDFF and PDFF was ρ = 0.87 with 95% limits of agreement of ±8.5%. Additionally, the diagnosis of steatosis, defined as MRI-PDFF higher than 5% and 10%, had area under the receiver operating characteristic curve values of 0.97 (95% CI, 0.93-0.99) and 0.95 (95% CI, 0.9-0.98), respectively. The body mass index was not correlated with either UDFF or PDFF. Conclusions-An on-system, integrated UDFF tool provides a simple, noninvasive, accessible, low-cost, and commercially viable clinical tool for quantifying the hepatic fat fraction with a high degree of agreement with histologic biopsy or the MRI-PDFF biomarker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.