Video is frequently used as a learning medium in a variety of educational settings, including large online courses as well as informal learning scenarios. To foster learner engagement around instructional videos, our learning scenario facilitates interactive note taking and commenting similar to popular social video-sharing platforms. This approach has recently been enriched by introducing nudging mechanisms, which raises questions about ensuing learning effects. To better understand the nature of these effects, we take a closer look at the content of the comments. Our study is based on an ex post analysis of a larger data set from a recent study. As a first step of analysis, video comments are clustered based on a feature set that captures the temporal and semantic alignment of comments with the videos. Based on the ensuing typology of comments, learners are characterized through the types of comments that they have contributed. The results will allow for a better targeting of nudges to improve video-based learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.