5G is expected to provide network connectivity to not only classical devices (i.e. tablets, smartphones, etc) but also to the Internet Of Things (IOT), which will drastically increase the traffic load carried over the network. 5G will mainly rely on Network Function Virtualization (NFV) and Software Defined Network (SDN) to build flexible and on-demand instances of functional networking entities, via Virtual Network Functions (VNF). Indeed, 3GPP is devising a new architecture for the core network, which replaces point to point interfaces used in 3G and 4G, by a producer/consumer-based communication among 5G core network functions, facilitating deployment over a virtual infrastructure. One big advantage of using VNF, is the possibility of dynamically scaling, depending on traffic load (i.e. instantiate new resources to VNF when the traffic load increases, and reduce the number of resources when the traffic load decreases). In this paper, we propose a novel mechanism to scale 5G core network resources by anticipating traffic load changes through forecasting via Machine Learning (ML) techniques. The traffic load forecast is achieved by using and training a Neural Network on a real dataset of traffic arrival in a mobile network. Two techniques were used and compared: (i) Recurrent Neural Network (RNN), more specifically Long Short Term Memory Cell (LSTM); and (ii) Deep Neural Network (DNN). Simulation results showed that the forecast-based scalability mechanism outperforms the threshold-based solutions, in terms of latency to react to traffic change, and delay to have new resources ready to be used by the VNF to react to traffic increase.
Network Function Virtualization (NFV) and service orchestration simplify the deployment and management of network and telecommunication services. The deployment of these services requires, typically, the allocation of Virtual Network Function -Forwarding Graph (VNF-FG), which implies not only the fulfillment of the service's requirements in terms of Quality of Service (QoS), but also considering the constraints of the underlying infrastructure. This topic has been well-studied in existing literature, however, its complexity and uncertainty of available information unveil challenges for researchers and engineers. In this paper, we explore the potential of reinforcement learning techniques for the placement of VNF-FGs. However, it turns out that even the most well-known learning technique is ineffective in the context of a large-scale action space. In this respect, we propose approaches to find out feasible solutions while improving significantly the exploration of the action space. The simulation results clearly show the effectiveness of the proposed learning approach for this category of problems. Moreover, thanks to the deep learning process, the performance of the proposed approach is improved over time.
Video services are being adopted widely in both mobile and fixed networks. For their successful deployment, the content providers are increasingly becoming interested in evaluating the performance of such traffic from the final users' perspective, that is, their Quality of Experience (QoE). For this purpose, subjective quality assessment methods are costly and can not be used in real time. Therefore, automatic estimation of QoE is highly desired. In this paper, we propose a noreference QoE monitoring module for adaptive HTTP streaming using TCP and the H.264 video codec. HTTP streaming using TCP is the popular choice of many web based and IPTV applications due to the intrinsic advantages of the protocol. Moreover, these applications do not suffer from video data loss due to the reliable nature of the transport layer. However, there can be playout interruptions and if adaptive bitrate video streaming is used then the quality of video can vary due to lossy compression. Our QoE estimation module, based on Random Neural Networks, models the impact of both factors. The results presented in this paper show that our model accurately captures the relation between them and QoE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.