The main control tasks in autonomous vehicles are steering (lateral) and speed (longitudinal) control. PID controllers are widely used in the industry because of their simplicity and good performance, but they are difficult to tune and need additional adaptation to control nonlinear systems with varying parameters. In this paper, the longitudinal control task is addressed by implementing adaptive PID control using two different approaches: Genetic Algorithms (GA-PID) and then Neural Networks (NN-PID) respectively. The vehicle nonlinear longitudinal dynamics are modeled using Powertrain blockset library. Finally, simulations are performed to assess and compare the performance of the two controllers subject to external disturbances.
Autonomous vehicles are the upcoming solution to most transportation problems such as safety, comfort and efficiency. The steering control is one of the main important tasks in achieving autonomous driving. Model predictive control (MPC) is among the fittest controllers for this task due to its optimal performance and ability to handle constraints. This paper proposes an adaptive MPC controller (AMPC) for the path tracking task, and an improved PSO algorithm for optimising the AMPC parameters. Parameter adaption is realised online using a lookup table approach. The propose AMPC performance is assessed and compared with the classic MPC and the Pure Pursuit controller through simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.