We consider a mathematical model which describes the bilateral, frictionless contact between two elastic bodies. We will establish a variational formulation for the problem and prove the existence and uniqueness of the weak solution. We then study the asymptotic behavior when one dimension of the domain tends to zero. In which case, the uniqueness result of the solution for the limit problem are also proved.
Asymptotic analysis of an incompressible Stokes fluid in a dynamic regime in a three-dimensional thin domain [Formula: see text] with mixed boundary conditions and Tresca friction law is studied in this paper. The problem statement and variational formulation of the problem are reformulated in a fixed domain. In which case, the estimates on velocity and pressure are proved. These estimates will be useful in order to give a specific Reynolds equation associated with variational inequalities and prove the uniqueness.
We study the asymptotic behavior of solutions of the anisotropic heterogeneous linearized elasticity system in thin domain of
ℝ
3
which has a fixed cross-section in the
ℝ
2
plane with Tresca friction condition. The novelty here is that stress tensor has given by the most general form of Hooke’s law for anisotropic materials. We prove the convergence theorems for the transition 3D-2D when one dimension of the domain tends to zero. The necessary mathematical framework and (2D) equation model with a specific weak form of the Reynolds equation are determined. Finally, the properties of solution of the limit problem are given, in which it is confirmed that the limit problem is well defined.
The quasistatic problem of a viscoelastic body in a three-dimensional thin domain with Tresca’s friction law is considered. The viscoelasticity coefficients and data for this system are assumed to vary with respect to the thickness ε. The asymptotic behavior of weak solution, when ε tends to zero, is proved, and the limit solution is identified in a new data system. We show that when the thin layer disappears, its traces form a new contact law between the rigid plane and the viscoelastic body. In which case, a generalized weak form equation is formulated, the uniqueness result for the limit problem is also proved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.