In this paper, a composite adaptive dynamic surface control scheme is developed for a class of parametric strict-feedback nonlinear systems. The proposed composite adaptation law uses both the surface error and the estimation error to update the parameters. In addition, by using the dynamic surface control technique, the problem of the explosion of complexity in the adaptive backstepping design is avoided. It is proved that the proposed scheme guarantees uniform ultimate boundedness of all signals in the closed-loop system with arbitrary small surface error by adjusting the design parameters. Simulation results demonstrate the effectiveness of the proposed approach for an electrohydraulic actuator system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.