This paper defines a new Moth-Flame optimization version withQuantum behaved moths, QMFO. The multi-objective version of QMFO (MOQMFO) is then applied to solve clustering problems. MOQMFO used three cluster validity criteria as objective functions (the I-index, Con-index and Sym-index) to establish the multi-objective clustering optimization. This paper details the proposal and the preliminary obtained results for clustering real-life datasets (including Iris, Cancer, Newthyroid, Wine, LiverDisorder and Glass) and artificial datasets (including Sph_5_2, Sph_4_3, Sph_6_2, Sph_10_2, Sph_9_2, Pat 1, Pat 2, Long 1, Sizes 5, Spiral, Square 1, Square 4, Twenty and Fourty). Compared with key multi-objectives clustering techniques, the proposal showed interesting results essentially for Iris, Newthyroid, Wine, LiverDisorder, Sph_4_3, Sph_6_2, Long 1, Sizes 5, Twenty and Fourty; and was able to provide the exact number of clusters for all datasets.
In this paper a new technique is integrated to Multi-Objective Particle Swarm Optimization (MOPSO) algorithm, named Pareto Neighborhood (PN) topology, to produce MOPSO-PN algorithm. This technique involves iteratively selecting a set of best solutions from the Pareto-Optimal-Fronts and trying to explore them in order to find better clustering results in the next iteration. MOPSO-PN was then used as a Multi?Objective Clustering Optimization (MOCO) Algorithm, it was tested on various datasets (real-life and artificial datasets). Two scenarios have been used to test the performances of MOPSO-PN for clustering: In the first scenario MOPSO-PN utilizes, as objective functions, two clusters validity index (Silhouette?Index and overall-cluster-deviation), three datasets for test, four algorithms for comparison and the average Minkowski Score as metric for evaluating the final clustering result; In the second scenario MOPSO-PN used, as objectives functions, three clusters validity index (I-index, Con-index and Sym?index), 20 datasets for test, ten algorithms for comparison and the F-Measure as metric for evaluating the final clustering result. In both scenarios, MOPSO-PN provided a competitive clustering results and a correct number of clusters for all datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.