ObjectiveVarious stressors induce stress responses through the hypothalamic–pituitary–adrenal and the sympathetic–adrenal–medullary axes, which are regulated, in part, by orexin. For example, secretion of orexin in the hypothalamus is increased in rats exposed to the stress of social isolation for 1 week. In this study, the antistress effects of Kampo medicine Yokukansan (YKS) via the regulation of orexin secretion were investigated using a rat model.Methods and resultsThe administration of 300 mg/kg per day of YKS to rats for 1 week significantly decreased the plasma orexin levels compared with non-treated rats, whereas the administration of 1,000 mg/kg of YKS had no effect on orexin levels. Therefore, 300 mg/kg of YKS was an effective dose for controlling orexin secretion. Subsequently, rats were divided into group-housed control (Con), individually housed stress (Stress), and individually housed YKS (300 mg/kg)-treated stress (Stress + YKS) groups. After 1 week, a resident–intruder aggression test was performed, and the plasma levels of orexin and corticosterone were measured. In the Stress group, aggressive behavior and the levels of corticosterone and orexin significantly increased compared with the Con group; however, these effects were inhibited in the Stress + YKS group. Further, an orexin receptor antagonist (TCS 1102; 10 mg/kg) was intraperitoneally administered to rats exposed to isolation stress to determine whether orexin was involved in stress responses. Under these conditions, aggressive behavior and the level of corticosterone significantly decreased compared with the Stress group.ConclusionThese results suggest that orexin is involved in the control of stress response and that YKS exerts an antistress effect via the regulation of orexin secretion.
BackgroundYokukansan (YKS), a traditional herbal (Kampo) medicine consisting of seven herbs, is effective in the treatment of pain disorders, such as headache, postherpetic neuralgia, fibromyalgia, and trigeminal neuralgia, and we have previously shown it to be effective against morphine analgesic tolerance in rats. It has been reported that orexin receptor antagonists prevent the development of morphine tolerance and that YKS inhibits the secretion of orexin A in the hypothalamus. This study examined whether the inhibition of the secretion of orexin A by YKS is one mechanism underlying its effect against morphine analgesic tolerance.MethodsMale Wistar rats were administered a subcutaneous injection of morphine hydrochloride (10 mg/kg/day) for 5 days. One group was preadministered YKS, starting 3 days before the morphine. The withdrawal latency following thermal stimulation was measured daily using a hot plate test. On day 5, the levels of orexin A in the plasma and the midbrain were measured, and the appearance of activated astrocytes in the midbrain was examined by immunofluorescence staining.ResultsThe preadministration of YKS prevented the development of morphine tolerance. The repeated administration of morphine significantly increased the plasma and midbrain levels of orexin A and the activation of astrocytes. These increases were significantly inhibited by the preadministration of YKS.ConclusionThese results suggest that the preadministration of YKS attenuated the development of antinociceptive morphine tolerance and that the inhibition of orexin A secretion may be one mechanism underlying this phenomenon.
ObjectivesIrritable bowel syndrome (IBS) is a functional gastrointestinal disorder with symptoms of abnormal defecation and abdominal discomfort. Psychological factors are well known to be involved in onset and exacerbation of IBS. A few studies have reported effectiveness of traditional herbal (Kampo) medicines in IBS treatment. Yokukansan (YKS) has been shown to have anti-stress and anxiolytic effects. We investigated the effect of YKS on defecation induced by stress and involvement of oxytocin (OT), a peptide hormone produced by the hypothalamus, in order to elucidate the mechanism of YKS action.Methods and resultsMale Wistar rats were divided into four groups; control, YKS (300 mg/kg PO)-treated non-stress (YKS), acute stress (Stress), and YKS (300 mg/kg PO)-treated acute stress (Stress+YKS) groups. Rats in the Stress and Stress+YKS groups were exposed to a 15-min psychological stress procedure involving novel environmental stress. Levels of plasma OT in the YKS group were significantly higher compared with those in the Control group (P < 0.05), and OT levels in the Stress+YKS group were remarkably higher than those in the other groups (P < 0.01). Next, rats were divided into four groups; Stress, Stress+YKS, Atosiban (OT receptor antagonist; 1 mg/kg IP)-treated Stress+YKS (Stress+YKS+B), and OT (0.04 mg/kg IP)-treated acute stress (Stress+OT) groups. Rats were exposed to acute stress as in the previous experiment, and defecation during the stress load was measured. Administration of YKS or OT significantly inhibited defecation; however, administration of Atosiban partially abolished the inhibitory effect of YKS. Finally, direct action of YKS on motility of isolated colon was assessed. YKS (1 mg/mL, 5 mg/mL) did not inhibit spontaneous contraction.ConclusionThese results suggested that YKS influences stress-induced defecation and that increased OT secretion may be a mechanism underlying this phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.