When baicalin was orally administered to conventional rats, it was detected in their plasma for 24 h after administration, but baicalein, the aglycone of baicalin, was not detected. However, when baicalin was given to germ-free rats, only a small amount of baicalin was detected in their plasma within 2 h after the administration, its AUC0-lim (the area under the concentration-time curve from 0 to last determination time) being 12.0% of that in conventional rats. Subsequently, a considerable amount (55.1 +/- 6.2%) of baicalin was recovered from the gastrointestinal tract even 4 h after administration. When baicalein was orally administered to conventional rats, however, baicalin appeared rapidly in their plasma at an AUC0-lim value similar to that obtained after oral administration of baicalin, despite the absence of baicalein in plasma. When intestinal absorption was evaluated by the rat jejunal loop method, baicalein was absorbed readily, but only traces of baicalin were absorbed. Moreover, in conventional rats a small amount (13.4 +/- 3.1%) of baicalin and an appreciable amount (21.9 +/- 3.4%) of baicalein were recovered from the gastrointestinal tract even 4 h after oral administration of baicalin, but only a small amount (3.93 +/- 1.43%) of baicalein was detected in the intestinal tract 1 h after administration of baicalein. Baicalin was transformed to baicalein readily by the rat gastric and caecal contents. When baicalin was administered orally to conventional rats, an appreciable amount of baicalein was recovered in their gastrointestinal tracts. Moreover, baicalein was efficiently conjugated to baicalin in rat intestinal and hepatic microsomes. These results indicate that baicalin itself is poorly absorbed from the rat gut, but is hydrolysed to baicalein by intestinal bacteria and then restored to its original form from the absorbed baicalein in the body.
Objective. Chemotherapy-induced oral mucositis (COM) is characterized by painful inflammation with prolonged damage that involves the pathological pain-evoking prostaglandin E2 (PGE2). We previously found that gargling with hangeshashinto (HST), a traditional Japanese medicine, was effective for the treatment of COM. However, little is known regarding the mechanisms. Our aim was to identify the active ingredients and clarify the characteristic effects of HST on the PGE2 system. Methods. Prostanoids produced by human oral keratinocytes (HOK) stimulated with IL-1β were measured by enzyme immunoassay. Active ingredients that regulate PGE2 production were identified and quantified by liquid chromatographytandem mass spectrometry (LC-MS/MS) and a culture system of HOK cells. Results. Inducible PGE2, PGD2, and PGF2α, metabolites of cyclooxygenase (COX) pathways, were reduced by HST (10-300 µg/mL) without inducing cytotoxicity. The active ingredients of HST were quantified by LC-MS/MS, and [6]-shogaol, [6]-gingerol, wogonin, baicalein, baicalin, and berberine were shown to reduce PGE2 production. A mixture of these 6 ingredients at concentrations equal to 300 µg/mL of HST strongly suppressed PGE2 production to the same level as HST.[6]-Shogaol and [6]-gingerol did not decrease COX-2 mRNA expression and mostly inhibited PGE2 metabolic activity in an assay using intact HOK cells, suggesting that they regulate PGE2 synthesis at the posttranscriptional level. Wogonin, baicalin, and berberine inhibited expression of COX-2 mRNA without affecting PGE2 metabolic activity. Moreover, wogonin, but not [6]-shogaol, suppressed phosphorylation of mitogen-activated protein kinases (p38s and JNKs). Conclusions. These lines show that HST includes several PGE2-regulating ingredients that have different mechanisms and can function as a multicomponent and multitarget agent for treatment of COM, indicating that HST may be beneficial in a new medical strategy for COM treatment.
The present study is a chronological morphological examination on the effects of collagen gel matrix on regeneration of severed sciatic nerves. The nerves (5 mm length) were resected, and both the distal and proximal stumps were inserted into a silicone tube with 5 mm gap in between. In the test side, the gap in the tube was then injected with liquid collagen which gells in the tissue when reconstructed with a certain buffer solution. The gap space in the tube of the control side was left empty. In a chronological examination of the tissue in the tube, considerably more rapid growth of sprouting axons toward the distal stump in the test side was revealed in comparison with the control side. The cells, including both fibroblasts and larger Schwann cells, were less in number. More orderly directions were observed in the collagen matrix than in the control tube. The result indicates that regeneration of the peripheral nerves in the silicone tube can be improved, by using appropriate exogenous fine materials, collagen matrix.
The extraction ratios of paeoniflorin in gut wall (EG), liver (EH) and lung (EL) were assessed by comparing AUCs after various routes of its administration to estimate the first-pass effects and the metabolism by intestinal flora. Pulmonary extraction ratio of paeniflorin was assessed by comparing AUCs calculated from venous and arterial plasma concentrations after its intravenous administration (0.5 mg kg-1). The mean pulmonary extraction ratio was estimated to be 0.06. The hepatic extraction ratio (EH was assessed by comparing AUCs after intraportal and intravenous administrations (0.5 and 5 mg kg-1). The plasma concentration profiles of paeoniflorin after intraportal administration were very close to those after intravenous administration, suggesting a negligible hepatic extraction ratio of paeoniflorin. The AUC value after intraperitoneal administration (0.5 mg kg-1) was greater than that after intraportal or intravenous administration. This finding suggests that paeoniflorin is not metabolized in the gut wall. The transference of paeoniflorin from the serosal side to the mucosal side was evaluated by the in-vitro everted sac method. The low intestinal permeability (19.4% at 60 min) was demonstrated by the comparison with phenobarbital (63.1% at 60 min). We conclude that paeoniflorin is not metabolize by gut wall, liver and lung, its poor absorption from the intestine results in extremely low bioavailability and the unabsorbed fraction of paeoniflorin is degraded by the intestinal flora.
To investigate the pharmacokinetics of [6]-shogaol, a pungent ingredient of Zingiber officinale Roscoe, the pharmacokinetic parameters were determined by using (14)C-[6]-shogaol (labeled compound) and [6]-shogaol (non-labeled compound). When the labeled compound was orally administered to rats, the maximum plasma concentration (C (max)) and the area under the curve (AUC) of plasma radioactivity concentration increased in a dose-dependent manner. When the labeled compound was orally administered at a dose of 10 mg/kg, 20.0 + or - 1.8% of the radioactivity administered was excreted into urine, 64.0 + or - 12.9% into feces, and 0.2 + or - 0.1% into breath. Thus, more of the radioactivity was excreted into feces than into urine, and almost no radioactivity was excreted into breath. Furthermore, when the labeled compound was orally administered at a dose of 10 mg/kg, cumulative biliary radioactivity excretion over 48 h was 78.5 + or - 4.5% of the radioactivity administered, and cumulative urinary radioactivity excretion over 48 h was 11.8 + or - 2.7%, showing that about 90% of the dose administered orally was absorbed from the digestive tract and most of the fecal excretion was via biliary excretion. On the other hand, when the non-labeled compound [6]-shogaol was orally administered, the plasma concentration and biliary excretion of the unchanged form were extremely low. When these results are combined with those obtained with the labeled compound, it would suggest that [6]-shogaol is mostly metabolized in the body and excreted as metabolites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.