We perform a local stability analysis of rotational flows in the presence of a constant vertical magnetic field and an azimuthal magnetic field with a general radial dependence. Employing the short-wavelength approximation we develop a unified framework for the investigation of the standard, the helical, and the azimuthal version of the magnetorotational instability, as well as of current-driven kink-type instabilities. Considering the viscous and resistive setup, our main focus is on the case of small magnetic Prandtl numbers which applies, e.g., to liquid metal experiments but also to the colder parts of accretion disks. We show that the inductionless versions of MRI that were previously thought to be restricted to comparably steep rotation profiles extend well to the Keplerian case if only the azimuthal field slightly deviates from its current-free (in the fluid) profile. We find an explicit criterion separating the pure azimuthal inductionless magnetorotational instability from the regime where this instability is mixed with the Tayler instability. We further demonstrate that for particular parameter configurations the azimuthal MRI originates as a result of a dissipation-induced instability of the Chandrasekhar's equipartition solution of ideal magnetohydrodynamics.
Three-dimensional motion of a thin vortex filament with axial velocity, embedded in an inviscid incompressible fluid, is investigated. The deflections of the core centreline are not restricted to be small compared with the core radius. We first derive the equation of the vortex motion, correct to the second order in the ratio of the core radius to that of curvature, by a matching procedure, which recovers the results obtained by Moore & Saffman (1972). An asymptotic formula for the linear dispersion relation is obtained up to the second order. Under the assumption of localized induction, the equation governing the self-induced motion of the vortex is reduced to a nonlinear evolution equation generalizing the localized induction equation. This new equation is equivalent to the Hirota equation which is integrable, including both the nonlinear Schrödinger equation and the modified KdV equation in certain limits. Therefore the new equation is also integrable and the soliton surface approach gives the N-soliton solution, which is identical to that of the localized induction equation if the pertinent dispersion relation is used. Among other exact solutions are a circular helix and a plane curve of Euler's elastica. This local model predicts that, owing to the existence of the axial flow, a certain class of helicoidal vortices become neutrally stable to any small perturbations. The non-local influence of the entire perturbed filament on the linear stability of a helicoidal vortex is explored with the help of the cutoff method valid to the second order, which extends the first-order scheme developed by Widnall (1972). The axial velocity is found to discriminate between right- and left-handed helices and the long-wave instability mode is found to disappear in a certain parameter range when the successive turns of the helix are not too close together. Comparison of the cutoff model with the local model reveals that the non-local induction and the core structure are crucial in making quantitative predictions.
We develop a general matrix method to analyze from a far field the dynamics of an accelerated interface between incompressible ideal fluids of different densities with interfacial mass flux and with negligible density variations and stratification. We rigorously solve the linearized boundary value problem for the dynamics conserving mass, momentum, and energy in the bulk and at the interface. We find a new hydrodynamic instability that develops only when the acceleration magnitude exceeds a threshold. This critical threshold value depends on the magnitudes of the steady velocities of the fluids, the ratio of their densities, and the wavelength of the initial perturbation. The flow has potential velocity fields in the fluid bulk and is shear-free at the interface. The interface stability is set by the interplay of inertia and gravity. For weak acceleration, inertial effects dominate, and the flow fields experience stable oscillations. For strong acceleration, gravity effects dominate, and the dynamics is unstable. For strong accelerations, this new hydrodynamic instability grows faster than accelerated Landau-Darrieus and Rayleigh-Taylor instabilities. For given values of the fluids' densities and their steady bulk velocities, and for a given magnitude of acceleration, we find the critical and maximum values of the initial perturbation wavelength at which this new instability can be stabilized and at which its growth is the fastest. The quantitative, qualitative, and formal properties of the accelerated conservative dynamics depart from those of accelerated Landau-Darrieus and Rayleigh-Taylor dynamics. New diagnostic benchmarks are identified for experiments and simulations of unstable interfaces. Published by AIP Publishing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.