Active noise control systems of simple ducts are investigated. In particular, open-loop characteristics and closed-loop performances corresponding to various structures of control sources are compared based on both mathematical models and experimental results. In addition to the standard single loudspeaker and the Swinbanks' source, we propose and examine a single loudspeaker with a rear sound interference as a novel structure of control source, where the rear sound radiated from the loudspeaker is interfered with the front sound in order to reduce the net upstream sound directly radiated from the control source. The comparisons of the control structures are performed as follows. First, the open-loop transfer function is derived based on the standard wave equation, where a generalized control structure unifying the three structures mentioned above is considered. Secondly, by a comparison of the open-loop transfer functions from the first principle modeling and frequency response experiments, it is shown that a certain phase-lag is imposed by the Swinbanks' source and the rear sound interference. Thirdly, effects on control performances of control source structures are examined by control experiments with robust controllers.
We deal with the design of active noise control systems for ventilation ducts with a pair of loud-speakers based on sampleddata H ∞ optimization, in order to improve our previous study with a single loudspeaker. The resultant controller requires lower computational complexity for the implementation, compared to the standard time-varying adaptive controllers, since it is time-invariant and the order is comparable. Moreover, the effect of Swinbanks' source is automatically recovered by the H ∞ optimization. The benefit of the proposed method is also confirmed from experimental results for a real house, where the achieved noise attenuation level is about twice as much as that of the single loudspeaker case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.