Exposure to light at night results in disruption of endogenous circadian rhythmicity and/or suppression of pineal melatonin, which can consequently lead to acute or chronic adverse health problems. In the present study, we investigated whether exposure to very dim light or very bright light for a short duration influences melatonin suppression, subjective sleepiness, and performance during exposure to constant moderately bright light. Twenty-four healthy male university students were divided into two experimental groups: Half of them (mean age: 20.0 ± 0.9 years) participated in an experiment for short-duration (10 min) light conditions of medium intensity light (430 lx, medium breaks) vs. very dim light (< 1 lx, dim breaks) and the other half (mean age: 21.3 ± 2.5 years) participated in an experiment for short-duration light conditions of medium intensity light (430 lx, medium breaks) vs. very bright light (4700 lx, bright breaks). Each simulated night shift consisting of 5 sets (each including 50-minute night work and 10-minute break) was performed from 01:00 to 06:00h. The subjects were exposed to medium intensity light (550 lx) during the night work.Each 10-minute break was conducted every hour from 02:00 to 06:00h. Salivary melatonin concentrations were measured, subjective sleepiness was assessed, the psychomotor vigilance task was performed at hourly intervals from 21:00h until the end of the experiment. Compared to melatonin suppression between 04:00 and 06:00h in the condition of medium breaks, the condition of dim breaks significantly promoted melatonin suppression and the condition of bright breaks significantly diminished melatonin suppression. However, there was no remarkable effect of either dim breaks or bright breaks on subjective sleepiness and performance of the psychomotor vigilance task. Our findings suggest that periodic exposure to light for short durations during exposure to a constant light environment affects the sensitivity of pineal melatonin to constant light depending on the difference between light intensities in the two light conditions (i.e., short light exposure vs. constant light exposure). Also, our findings indicate that exposure to light of various intensities at night could be a factor influencing the light-induced melatonin suppression in real night work settings.
This study investigated a rainfall event under a typhoon influence using a 2D video disdrometer and weather radar observations to characterize raindrop size distribution (DSD) in a mixed convective and stratiform precipitating system. During the time period when both convective and stratiform rainfalls existed, the DSDs generally indicated a monotonically decreasing shape with increasing particle size, with a relatively gradual decrease at intermediate particle size observed at certain times; this feature is attributed to the combined effect of convective and stratiform rainfalls. During the transitional period between convective and stratiform rainfalls, the DSDs exhibited a bimodal shape. The DSDs were well approximated by a newly proposed gamma raindrop distribution combined with exponential (GRACE) distribution function, which was defined as the sum of the exponential distribution and the gamma distribution. A comparison of the volume ratio of the exponential and gamma components of the GRACE distribution revealed that the exponential component of the DSD was larger than the gamma component in the bimodal DSD. These results suggest that the DSD became bimodal during the period when stratiform rainfall predominated because of the weakening of convective rainfall. The GRACE distribution is useful for understanding cloud‐microphysical processes in mixed stratiform and convective precipitation conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.