Herein, the effects of changes in acoustic and non-acoustic factors on public health and reactions were assessed using two follow-up investigations; this was achieved after three surveys were conducted on the impact of the step change in noise caused by the increased number of flights at the Noi Bai International Airport in Hanoi (Vietnam) after the new terminal building was opened to the public. Exposure-response relationships established in the follow-up studies were less in number than those established in 2015 after the step change had occurred, and were almost similar to the relationship established in the survey conducted before the step change; however, these relationships were significantly greater than those established in the European Union position paper. Comparisons between respondents with high blood pressure and insomnia ratios at different noise level ranges showed that there is no significant association between ratios of high blood pressure and day-evening-night noise levels; however, an exposure-response relationship was discovered between insomnia and night-time noise levels. Non-acoustic factors such as noise sensitivity, sound insulation capacity of houses, and length of residence were found to curb the respondents’ annoyance, insomnia, and high blood pressure. Thus, an improvement in residence quality and a restriction on nighttime flight operation is necessitated.
Knowledge of distinct effects of moisture content and air volume on acoustic properties of soil is sought to predict the influence of human activities such as cultivation on acoustic propagation outdoors. This work used an impedance tube with the two-thickness method to investigate such effects. For a constant moisture weight percentage, the magnitude of the characteristic impedance became smaller and the absorption coefficient became higher with increase of the air space ratio. For a constant air space ratio, the absorption coefficient became larger and the magnitude of the propagation constant became smaller with increasing moisture weight percentage.
With the recent progresses in computer performance and simulation techniques, it is becoming feasible to apply full three-dimensional wave-based numerical simulation techniques to large-scale problems of real-life sound propagation outdoors. In the present paper, a reconstruction technique for real-life urban geometries with full reproduction of the roof shapes and for the ground profiles using digital geographic information is presented. Also, a generation technique for the uniform rectilinear grid used in finite-difference time-domain simulations is presented. The types of geographic dataset used for the reconstruction are a digital surface model and a two-dimensional building outline map. For comparison, another geometry with flat building roofs, which is the type of geometry used in former noise-mapping studies using empirical models, is created. Comparison of the results of finitedifference time-domain acoustic simulations performed over the geometries shows sound pressure level differences above and behind buildings. The maximum level difference of 10 dB in magnitude indicates the necessity of proper reconstruction of the roof shapes in real-life urban acoustic simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.