Thymic size and density were studied in 23 untreated patients with Graves' disease and 38 control subjects using computed tomography. Both thymic size and density were higher in untreated patients with Graves' disease than in control subjects in the age-matched group. After treatment with antithyroid drugs, both thymic size and density were significantly reduced, with a concomitant decrease in thyrotropin receptor antibodies. PCR of human thymic cDNA using primers for human thyrotropin receptor amplified a fragment in a size expected for the receptor, and its nucleotide sequence was identical to human thyrotropin receptor cDNA in the thyroid. Northern blot analysis of human thymic poly (
We have studied the expression of type II iodothyronine deiodinase (DII) in human thyroid tumors and cultured human thyroid cells to elucidate the mechanisms involved in the regulation of DII expression in human thyroid gland. Three cases with hyperfunctioning thyroid adenoma, including a case that showed an activating mutation of G(s)alpha with a constitutive activation of cAMP production in cultured cells, and six cases with papillary thyroid carcinoma were analyzed in the present study. Free T(3) was increased, whereas free T(4) was within the normal range in all patients with hyperfunctioning thyroid adenoma. Thyroid tumor tissue and surrounding nontumor tissue were obtained at the time of surgery, and DII expression was compared between tumor tissue and nontumor tissue in each case. Northern analysis demonstrated the presence of DII messenger RNA (mRNA) approximately 7.5 kb in size in all of the tumor and nontumor tissues. DII mRNA and DII activity in hyperfunctioning thyroid adenoma were significantly increased compared with those in nontumor tissue in each case. In contrast, DII mRNA and DII activity in papillary thyroid carcinoma were decreased compared with those in nontumor tissue in each case. DII mRNA and DII activity in cultured human thyroid cells were significantly stimulated by TSH in a dose-dependent manner. The promoter activity of the human DII gene including the complete cAMP response element, transfected to cultured human thyroid cells, was stimulated by (Bu)(2)cAMP. In summary, these results suggest that DII expression in human thyroid gland is regulated at the transcriptional level through the TSH receptor-G(s)alpha-cAMP regulatory cascade, which may be related to the increase in circulating T(3) level in patients with Graves' disease and hyperfunctioning thyroid adenoma.
It has been demonstrated that type II iodothyronine deiodinase is present in rat pineal gland, and the deiodinase activity markedly increases during the hours of darkness, primarily through beta-adrenergic mechanism. We have studied the relationship between pineal type II iodothyronine deiodinase messenger RNA (mRNA) and the deiodinase activity to elucidate the mechanisms involved in the nocturnal rise in pineal deiodinase activity. Northern analysis has demonstrated that type II iodothyronine deiodinase mRNA is expressed in rat pineal gland, and the mRNA markedly increases during the hours of darkness. The nocturnal increase in pineal type II iodothyronine deiodinase activity is preceded by the increase in its mRNA. Daytime isoproterenol administration resulted in a rapid increase in pineal type II iodothyronine deiodinase mRNA followed by the increase in deiodinase activity. Propranolol treatment, bilateral superior cervical ganglionectomy, or constant light exposure significantly suppressed the nocturnal rise in type II iodothyronine deiodinase mRNA as well as the deiodinase activity. Moreover, isoproterenol or (Bu)2AMP stimulated type II iodothyronine deiodinase mRNA and the deiodinase activity in cultured rat pineal glands. These results suggest that the rhythmic change in pineal type II iodothyronine deiodinase activity is regulated at least in part at the pretranslational level by a beta-adrenergic mechanism transmitted through superior cervical ganglia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.