A novel 2D toroidal plasma flow velocimetry has been developed using tomographic reconstruction technique. The 2D imaging of local (R-Z) toroidal velocity is achieved by the vector tomographic reconstruction technique and multi-chord 2D spectroscopy by 35-channel optical fiber array. Numerical simulation for reconstruction of bi-directional toroidal velocity profile suggests that the cost-effective arrangement of the optical fiber for a toroidal plane is 7. We installed the system with 7 × 5 chords arrangement to the TS-4 device. This system successfully measured 2D bi-directional toroidal velocity profile around X point with 10% accuracy during the counter-helicity magnetic reconnection experiment.
The energy conversion mechanism for electron perpendicular energy, both the thermal and the kinetic energies, is investigated by means of two-dimensional, full-particle simulations in an open system. It is shown that electron perpendicular heating is mainly due to the breaking of magnetic moment conservation in separatrix region because the charge separation generates intense variation of electric field within the several electron Larmor radii. Meanwhile, electron perpendicular acceleration takes place mainly due to the polarization drift term as well as the curvature drift term of E·u⊥ in the downstream near the X-point. The enhanced electric field due to the charge separation there results in a significant effect of the polarization drift term on the dissipation of magnetic energy within the ion inertia length in the downstream.
Hinode observations have revealed intermittent recurrent plasma ejections/jets in the chromosphere. These are interpreted as a result of non-perfectly anti-parallel magnetic reconnection, i.e. component reconnection, between a twisted magnetic flux tube and the pre-existing coronal/chromospheric magnetic field, though the fundamental physics of component reconnection is unrevealed. In this paper, we experimentally reproduced the magnetic configuration and investigated the dynamics of plasma ejections, heating and wave generation triggered by component reconnection in the chromosphere. We set plasma parameters as in the chromosphere (density 10 14 cm −3 , temperature 5-10 eV, i.e. (5-10)×10 4 K, and reconnection magnetic field 200 G) using argon plasma. Our experiment shows bi-directional outflows with the speed of 5 km s −1 at maximum, ion heating in the downstream area over 30 eV and magnetic fluctuations mainly at 5-10 µs period. We succeeded in qualitatively reproducing chromospheric jets, but quantitatively we still have some differences between observations and experiments such as jet velocity, total energy and wave frequency. Some of them can be explained by the scale gap between solar and laboratory plasma, while the others probably by the difference of microscopy and macroscopy, collisionality and the degree of ionization, which have not been achieved in our experiment.
A magnetized coaxial plasma gun (MCPG) is utilized to generate a compact toroid (CT). An MCPG-type CT injector had been developed as a particle refueling system for C-2/C-2U field-reversed configuration (FRC) plasmas. To inject CTs repetitively for a long-lived plasma, the injector has been upgraded. Iron-core bias coil system has been adopted to generate stationary bias magnetic field. Typical MCPG systems use excess neutral gas to produce a breakdown; therefore, the excess gas tends to flow into the confinement vessel and cool off the edge plasma as well as the target plasma. This negative effect is more serious for repetitive CT injection so that a pre-ionization (PI) system is required to reduce initial gas amount. By injecting the initial plasma using the PI system, amount of the neutral gas for the injector can be reduced. The combination of these systems also expands operating range of the injector. By moving the iron-core bias coil, the radial magnetic field can be controlled. The PI system can easily produce breakdown; therefore, the MCPG can be operated at lower gas pressure, reduced by approximately 40 %. The optimum CT has higher velocity (>100 km/s) and ion temperature (>70 eV), increased by more than 40 %.
Hall effects on counter-helicity spheromak merging were investigated by two-dimensional MHD and Hall-MHD simulations of merging two axisymmetric toroidal flux tubes. In Hall-MHD cases, the structure of the reconnection current sheet and reconnection outflow are modified from the MHD case due to the Hall effect. We compared two cases (called “case-O” and “case-I”) of counter-helicity merging, which are distinguished by the polarity of toroidal magnetic fluxes. Radial motion of the reconnection X-point is controlled by poloidal electron flow accompanying the toroidal flux of the merging two spheromaks, and this creates a large difference in the current sheet and flow structure between the two cases of the Hall-MHD regime. The radial shift of the reconnection X-point depending on the polarity of toroidal magnetic flux of the spheromaks breaks the symmetry between the two cases. It was also found that there widely exists separation of ion and electron flow which are affected by the modification of the current sheet structure due to the radial shift of the X-point in the downstream side of the merging, and its spatial scale of the distribution of the Hall electric field is larger than the ion skin depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.