Automatic reed valves are widely used to control refrigerant gas flow in reciprocating compressors for automotive air conditioners. The oil film in the clearance between the reed and the valve seat causes a delay in opening of the valve. This opening delay of the discharge valve leads to over compression, which increases losses such as friction in sliding components and gas overheating. Therefore it is important to understand the behavior both of the oil film and the elastic reed deformation in order to reduce losses due to the delay. This study aims to develop an experimental setup that enables simultaneous visualization of the oil film rupture and measurement of the reed deformation, and to observe this behavior during the valve opening process. The gas-compression stroke is simulated by controlling compressed air with an electromagnetic valve. The oil film rupture is visually observed using a high speed camera through a special valve seat made of glass. The total deformation of the cantilever reed is identified by multipoint strain measurement with 12 strain gauges. The experiment finds that the opening process is divided into four stages. In the first stage, the reed remains stuck to the seat and deforms while the bore pressure increases. In the second stage, cavitation occurs in the oil film and the film starts to rupture. In the third stage, the oil film ruptures and the bore pressure starts to decrease. Finally, in the fourth stage, the reed is separated from the seat and the gas flows through the valve. Reducing the reed/seat contact area changes the reed deformation in the first stage, thereby increasing the reed/seat distance and realizing an earlier oil film rupture and a shorter delay.
In a discharge reed valve for compressors, the oil stiction by the oil film between the reed and the valve seat is investigated experimentally, and a simulation model is developed. Through a model experiment, the initial oil film thickness is measured by an interferometry method, and the valve displacement and the bore pressure are measured from the stiction to the valve opening. The opening delay time together with the initial oil film thickness is measured while changing the contact area and the oil species. In the simulation model, the deformation of the reed and the pressure of the oil film as a result of cavitation are coupled. In order to take into account the tensile stress in the oil film, a cavitation model directly simulating the expansion of cavitation bubbles is developed (herein, dynamic cavitation model). In the experiment, a smaller contact area, a larger initial film thickness, and a smaller oil viscosity yield a shorter delay. In the simulation, the dynamic cavitation model is advantageous in representing the experimental delay time. In particular, with respect to the relationship between the initial film thickness and the delay time, the dynamic cavitation model with an initial bubble radius that depends on the oil film thickness yields results similar to the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.