This paper presents the largest inertial sensor-based gait database in the world, which is made open to the research community, and its application to a statistically reliable performance evaluation for gait-based personal authentication. We construct several datasets for both accelerometer and gyroscope of three inertial measurement units and a smartphone around the waist of a subject, which include at most 744 subjects (389 males and 355 females) with ages ranging from 2 to 78 years. The database has several advantages: a large number of subjects with a balanced gender ratio, variations of sensor types, sensor locations, and ground slope conditions. Therefore, we can reliably analyze the dependence of gait authentication performance on a number of factors such as gender, age group, sensor type, ground condition, and sensor location. The results with the latest existing authentication methods provide several insights for these factors.
Raindrops adhered to a windscreen or window glass can significantly degrade the visibility of a scene. Modeling, detecting and removing raindrops will, therefore, benefit many computer vision applications, particularly outdoor surveillance systems and intelligent vehicle systems. In this paper, a method that automatically detects and removes adherent raindrops is introduced. The core idea is to exploit the local spatio-temporal derivatives of raindrops. To accomplish the idea, we first model adherent raindrops using law of physics, and detect raindrops based on these models in combination with motion and intensity temporal derivatives of the input video. Having detected the raindrops, we remove them and restore the images based on an analysis that some areas of raindrops completely occludes the scene, and some other areas occlude only partially. For partially occluding areas, we restore them by retrieving as much as possible information of the scene, namely, by solving a blending function on the detected partially occluding areas using the temporal intensity derivative. For completely occluding areas, we recover them by using a video completion technique. Experimental results using various real videos show the effectiveness of our method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.