The phase transitions and the internal aggregate structures of a highly dense suspension composed of magnetic plate-like particles with a magnetic moment normal to the particle axis have been investigated by means of the Monte Carlo method. The present study considered a quasi-2D system in order to clarify the influences of the volumetric fraction of particles and the magnetic field strength on particle aggregations and phase transitions. The internal structures of particle aggregates have been discussed quantitatively in terms of pair correlation functions, orientational pair correlation functions, nematic and polar order parameters. The main results obtained here are summarized as follows. When the influence of the magnetic interaction between particles is of the same order of that of the perpendicular magnetic field strength, the particles form column-like clusters, and the internal structure of the suspension shows solid-like structures. For the case of a strong applied magnetic field, the internal structure is transformed from solid-like structures into isotropic ones. However, as the volumetric fraction increases, the particles form brick wall-like structures under the situation of a strong applied magnetic field, and the internal structure exhibits solid-like ones. The brick wall-like structures also appear for a relatively weak magnetic field applied along the in-plane direction despite a slightly smaller volumetric fraction compared with the case of the perpendicular applied magnetic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.