International audienceFracture properties of a mother plate for API grade X100 line pipe were investigated using tensile notched bars, CT and SENB pre-cracked specimens. The material had an anisotropic plastic behaviour due to the thermo-mechanical control rolling process. In addition, anisotropic rupture properties were also observed. Specimens tested along the rolling direction were more ductile and more crack growth resistant than those tested along the long transverse direction. Unit cell calculations were used to show that this fracture behaviour is not related to plastic anisotropy. Assuming that fracture is controlled by internal necking between anisotropically spaced voids, a model combining GTN and Thomason models is proposed which enables describing rupture anisotropy. A modified phenomenological model is also proposed so as to reduce the computational cost
The crack arrestability for high strength line pipe steels with tensile strength of 650 to 850 MPa was evaluated using precrack DWTT (pc-DWTT). Moreover, the effects of microstructure and texture on pc-DWTT energy were investigated. The pc-DWTT energy was remarkably affected by tensile strength. The pc-DWTT energy of ferrite and bainite/martensite dual phase steels was much higher than that of bainite single phase steels in comparison with the same tensile strength. The {100} plane is a cleavage plane in iron, so the brittle crack mainly propagates along the {100} plane. Bainte single phase steels indicated a high intensity of the {100} on the plane rotated 40° from the rolling plane with the axis of the rolling direction. On the other hand, ferrite and bainite/martensite dual phase steels indicated not only a high intensity of the {100} plane rotated 40° from the rolling plane, but also a high intensity of the {100} plane parallel to the rolling plane. Slant fracture could be easily formed by the high intensity of the {100} on the plane rotated 40° from the rolling plane if local brittle areas such as martensite and austenite constituent (M-A constituent), which became the initiation point of brittle fracture, existed. In contrast, separation tended to be formed by the high intensity of the {100} plane parallel to the rolling plane that was caused by the formation of ferrite and bainte/martensite dual phase microstructure. Thus, pc-DWTT energy and shear area were remarkably affected by microstructure and texture. Therefore, to control microstructure and texture is vay important for the improvement of pc-DWTT properties.
International audienceLine pipes have anisotropic mechanical properties, such as tensile strength, ductility and toughness. These properties depend on both prestrain during the cold forming process and on the anisotropy of the mother plates. In this study, a phenomenological model combining isotropic and kinematic hardening is developed to represent anisotropic hardening behavior of high strength steel line pipes. The model is adjusted on experiments carried out on smooth and notched axisymmetric bars and plane strain specimens. The model is used to simulate bending tests carried out on large pipes containing a geometric imperfection.Numerical results suggest that prestraining in pipe forming process significantly affects the bending capacity of pipes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.