Proton conducting Ba(Zr0.5Ce0.4)8/9Y0.2O2.9 is employed as a potential steam electrolysis electrolyte for hydrogen production at intermediate temperature.
Heterointerfaces introduce unique localized defects into ionic conductors. This study explores the nanoionic characteristics exhibited by the proton-conducting oxides SrZr 0.9 Y 0.1 O 3-δ and SrCe 0.95 Yb 0.05 O 3-δ including finely dispersed precipitated platinum nanoparticles. The electrical conductivity of both the platinum-doped oxides revealed reversible nanoionic phenomena caused by the exsolution of the platinum in the form of platinum nanoparticles, at 0.5 vol% relative to the metal oxides, and dissolution in response to a change in gas atmosphere. In comparison with the original conductivity of SrZr 0.9 Y 0.1 O 3-δ and SrCe 0.95 Yb 0.05 O 3-δ , the conductivity of platinum-doped SrZr 0.9 Y 0.1 O 3-δ decreased significantly in a wet hydrogen atmosphere, whereas platinum-doped SrCe 0.95 Yb 0.05 O 3-δ showed almost no decrease in conductivity in the same atmosphere. The different responses of the two materials to the change in gas atmosphere are discussed in relation to the precipitation of platinum nanoparticles.
The in uences of In-and Y-doping on the electrical conduction properties of barium zirconate were investigated. The electrical conductivity measured on of BaZr 1−x−y In x Y y O 3−δ (x = 0, 0.1, 0.2 and y = 0, 0.1, 0.2) could be understood that yttrium doping causes high bulk conductivity and indium doping leads to lowering activation energy of the grain boundary. Co-doping of yttrium and indium promotes the enhancement effect of improving the bulk conductivity and lowering of activation energy, and it is thus expected that the co-doping with yttrium and indium can work for controlling the bulk and grain boundary conduction speci cally in the materials.
The interface of two materials having different work function leads to the development of space charge, resulting in the change of defect equivalence and hence the change in the charge carrier concentration. Another possibility lies in the formation of strain at the interface resulting in the change of the mobility of ionic charge carriers. If we can use these effects for the enhancement of ionic conductivity, introduction of hetero-interface is a potential guideline for designing new ion conduction in solids. We have reported previously that when Pt nanoparticles precipitate in proton conducting SrZr0.9Y0.1O3-δ (SZY), the electrical conductivity decreases markedly due to nanoionics effects; small amount of Pt can be dissolved into the Zr site and becomes zero-valent upon exposure to hydrogen [1]. Such a change in the macroscopic electrochemical properties is considered as a result of the unique microscopic electrochemical properties of the nanoscale space charge layer generated in the vicinity of the interface when the Pt nanoparticles are precipitated [2]. Using electrochemical spectroscopy, SrCe0.95Yb0.05O3-δ (SCYb) and Sr(Zr,Ce,Y)O3 proton conducting oxide thus doped with Pt were investigated with the aim to clarify the effects and mechanism of the Pt/oxide interface on the electrical properties of proton conducting oxide. Pt-doped proton conducting oxides were prepared by combustion synthesis method. The electrical conductivity of Pt-SZY and Pt-SCYb measured at 800 °C under 1% H2 and air atmospheres revealed a reversible nanoionics phenomenon as a result of precipitation and dissolution of platinum nanoparticles (Fig.1). The electrical conductivity then decreases significantly when the atmosphere is change to hydrogen for Pt-SZY. In the case of Pt-SCYb an increase in the conductivity can be seen for the same changes of the atmosphere. This change in electrical conductivity has been explained by the effect of precipitated Pt particles. In other words, a proton deficient region is formed in the vicinity of the interface between Pt and SZY whereas at the interface between Pt and SCYb, there is no such influence. Also, this result can be applied to deepen understanding of the reaction at the electrodes of the electrochemical cell. Comparing the electrode overvoltage when SZY and SCYb are used for the electrolyte in a cell using Pt as the electrode, SZY is several orders of magnitude larger than SCYb [3]. The reason for this can be explained if it is thought that the region where protons are not present is formed near the interface of Pt / SZY like as the case of Pt nanoparticles disperse in the bulk of SZY. On the other hand, the reason why the overvoltage at Pt/SCYb interface is smaller than that at SZY is considered to be a reasonable result of the loss of protons not taking place significantly near the interface. References [1] H. Matsumoto et. al., Solid State Ionics, 182 (2011), p. 13 [2] J. Maier, Nature Materials, 4 (2005), p. 805 [3] H. Matsumoto et. al., J. Alloys Compd. 408–412 (2006), p. 456 Figure 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.