Stressors contribute to thrombosis and insulin resistance. Since obesity-related adipose inflammation is also involved in these pathological states, we assumed that stress correlates with adipose inflammation. Male mice were subjected to 2-week intermittent restraint stress. Expression of plasma lipids, monocyte/macrophage markers (CD11b, CD68, and F4/80), proinflammatory cytokines (monocyte chemoattractant protein-1 [MCP-1], tumor necrosis factor-α, and interleukin-6), adiponectin, heat shock protein 70.1 (HSP70.1), and coagulation factors (plasminogen activation inhibitor-1 [PAI-1] and tissue factor [TF]) in blood and inguinal white adipose tissue (WAT) was determined using immunohistochemistry, enzyme-linked immunosorbent assay, and RT-PCR, respectively. Glucose metabolism was assessed by glucose tolerance tests (GTTs) and insulin tolerance tests, and expression of insulin receptor substrate-1 (IRS-1) and glucose transporter 4 (GLUT4) in WAT. To examine effects of MCP-1 blockade, animals were treated with control or neutralizing antibody, or transplanted with control or 7ND (dominant-negative form of MCP-1)-overexpressing adipose-derived stromal cells (ADSCs). Stress increased monocyte accumulation, free fatty acids, proinflammatory cytokine, and HSP70.1 and reduced adiponectin. Adipose stromal cells highly expressed MCP-1. The stress-induced adipose inflammation increased PAI-1 and TF but did not give rise to thrombus formation. Without any changes in GTT, stress worsened insulin sensitivity and decreased IRS-1 and GLUT4 in WAT. Neutralizing antibody and 7ND-ADSCs reversed stress-induced adipose inflammation, procoagulant state, and insulin resistance. Stress evoked adipose inflammation to increase coagulation factors and impair insulin sensitivity through adipose-derived MCP-1.
A robust ceramic
solid electrolyte with high ionic conductivity
is a key component for all-solid-state batteries (ASSBs). In terms
of the demand for high-energy-density storage, researchers have been
tackling various challenges to use metal anodes, where a fundamental
understanding on the metal/solid electrolyte interface is of particular
importance. The Na+ superionic conductor, so-called NASICON,
has high potential for application to ASSBs with a Na anode due to
its high Na+ ion conductivity at room temperature, which
has, however, faced a daunting issue of the significantly large interfacial
resistance between Na and NASICON. In this work, we have successfully
reduced the interfacial resistance as low as 14 Ω cm2 at room temperature by a simple mechanical compression of a Na/NASICON
assembly. We also demonstrate a fundamental study of the Na/NASICON
interface in comparison with the Na/β′′-alumina
counterpart by means of the electrochemical impedance technique, which
elucidates a stark difference between the activation energies for
interfacial charge transfer: ∼0.6 eV for Na/NASICON and ∼0.3
eV for Na/β′′-alumina. This result suggests the
formation of a Na+-conductive interphase layer in pressing
Na metal on the NASICON surface at room temperature.
Chronic stress is closely linked to the metabolic syndrome, diabetes, hyperuricemia and thromboembolism, but the mechanisms remain elusive. We reported recently that stress targets visceral adipose tissue (VAT), inducing lipolysis, low-grade inflammation with production of inflammatory adipokines, metabolic derangements such as insulin resistance, and prothrombotic state. In the present study, we hypothesized the involvement of VAT xanthine oxidoreductase (XOR), a source of reactive oxygen species (ROS) and uric acid (UA) in the above processes. Restraint stress in mice resulted in upregulation of XOR and xanthine oxidase activity, accumulation of ROS in VAT as well as liver and intestine, increase in serum UA levels, upregulation of NADPH oxidase subunits and downregulation of antioxidant enzymes. Immunohistochemistry and RT-PCR analysis also showed that restraint stress induced VAT monocyte accumulation and proinflammatory adipokine production, resulting in reduced insulin sensitivity and induction of plasminogen activator inhibitor-1 and tissue factor in VAT. Treatment with febuxostat, a potent XO inhibitor, suppressed stress-induced ROS production and VAT inflammation, resulting in improvement of serum UA levels, insulin sensitivity, and prothrombotic tendency. Our results suggest that stress perturbs glucose and UA metabolism, and promotes prothrombotic status, and that XO inhibition by febuxostat might be a potential therapy for stress-related disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.