Recently, a novel physiologically active peptide, kisspeptin (metastin), has been reported to facilitate sexual maturation and ovulation by directly stimulating GnRH neurons in several mammalian species. Despite its importance in the neuroendocrine regulation of reproduction, kisspeptin neurons have only been studied in mammals, and there has been no report on the kisspeptin or kisspeptin neuronal systems in nonmammalian vertebrates. We used medaka for the initial identification of the KiSS-1 gene and the anatomical distribution of KiSS-1 mRNA expressing neurons (KiSS-1 neurons) in the brain of nonmammalian species. In situ hybridization for the medaka KiSS-1 gene cloned here proved that two kisspeptin neuronal populations are localized in the hypothalamic nuclei, the nucleus posterioris periventricularis and the nucleus ventral tuberis (NVT). Furthermore, NVT KiSS-1 neurons were sexually dimorphic in number (male neurons >> female neurons) under the breeding conditions. We also found that the number of KiSS-1 neurons in the NVT but not that in the nucleus posterioris periventricularis was positively regulated by ovarian estrogens. The fact that there were clear differences in the number of NVT KiSS-1 neurons between the fish under the breeding and nonbreeding conditions strongly suggests that the steroid-sensitive changes in the KiSS-1 mRNA expression in the NVT occur physiologically, according to the changes in the reproductive state. From the present results, we conclude that the medaka KiSS-1 neuronal system is involved in the central regulation of reproductive functions, and, given many experimental advantages, the medaka brain may serve as a good model system to study its physiology.
Kiss2, a paralogous gene for kiss1, has recently been identified in several vertebrates. However, their relative potencies for the regulation of reproductive functions appear to differ among species. Here we used medaka as a model animal to examine the kiss1 and kiss2 expression dynamics by in situ hybridization under different conditions: breeding or nonbreeding and ovariectomized or sham operated. Medaka kiss1-expressing neurons and kiss2-expressing neurons were mainly localized in two hypothalamic nuclei, nucleus ventralis tuberis (NVT) and nucleus recessus lateralis (NRL), respectively. NRL kiss2 expression did not change according to differences in breeding condition, whereas NVT kiss1 expression was strongly correlated with breeding condition. In addition, ovariectomy did not change kiss2 expression but significantly decreased the kiss1 expression. Moreover, double-label in situ hybridization revealed that NVT Kiss1 neurons coexpress estrogen receptor-alpha, whereas NRL Kiss2 neurons do not. From these results, we conclude that the NVT Kiss1 neurons are positively regulated by ovarian estrogen via their coexpressed estrogen receptor-alpha and are directly involved in the central regulation of reproduction in medaka. In contrast, we argue that the NRL Kiss2 neurons in medaka may serve nonreproductive functions. These functional differences between Kiss1 and Kiss2 neurons are discussed from a phylogenetic viewpoint.
The kiss1 gene product kisspeptin is now considered to be an essential regulator of the hypothalamic-pituitary-gonadal (HPG) axis in most vertebrate species. Recent findings in fishes are beginning to set a new stage for the kisspeptin study; the existence of paralogous kisspeptin genes as well as kisspeptin receptor (formerly called GPR54) genes has quite recently been reported in several fish and amphibian species. The fishes may provide excellent animal models for the study of general principles underlying the kisspeptin and kisspeptin receptor systems of vertebrates from the evolutionary viewpoint. Unlike placental and marsupial mammalian species mainly studied so far, many teleost species have two paralogous genes of kisspeptin, kiss1 and kiss2. Medaka, Oryzias latipes, in which kiss1 and kiss2 are expressed in distinctive hypothalamic neuron populations, is a good model system for the study of central regulation of reproduction. Here, the kiss1 system but not the kiss2 system shows expression dynamics strongly indicative of its direct involvement in the HPG axis regulation via its actions on GnRH1 neurons. On the other hand, the kiss1 gene is missing, and only kiss2 is expressed in some fish species. Also, there are some recent reports that Kiss2 peptide may be a potent regulator of reproduction in some fish species. The ancestral vertebrate probably already had two paralogous kiss genes, and their main function was the HPG axis regulation. In the species that retained both paralogues during evolution, either Kiss1 or Kiss2 predominantly retains its ability for the HPG axis regulation, while the other may assume new non-reproductive functions (neofunctionalization). Alternatively, both the paralogues may assume complementary functions in the HPG axis regulation (subfunctionalization). After the divergence of teleost and tetrapod lineages, either one of the two paralogues, or even both in birds, have been lost (degradation) or became a pseudogene (non-functionalization), but the remaining paralogue retained its original function of HPG axis regulation. The identification of multiple forms of kisspeptin receptors and the rather promiscuous ligand-receptor relationships has led to the further proposal that such promiscuousness may be the basis for the functional robustness of kisspeptin and kisspeptin receptor systems in the HPG axis regulation, when one or both paralogous genes are lost or functionally partitioned during evolution.
Neuropeptide kisspeptin has been suggested to be an essential central regulator of reproduction in response to changes in serum gonadal steroid concentrations. However, in spite of wide kisspeptin receptor distribution in the brain, especially in the preoptic area and hypothalamus, the research focus has mostly been confined to the kisspeptin regulation on GnRH neurons. Here, by using medaka whose kisspeptin (kiss1) neurons have been clearly demonstrated to be regulated by sex steroids, we analyzed the anatomical distribution of kisspeptin receptors Gpr54-1 and Gpr54-2. Because the both receptors were shown to be activated by kisspeptins (Kiss1 and Kiss2), we analyzed the anatomical distribution of the both receptors by in situ hybridization. They were mainly expressed in the ventral telencephalon, preoptic area, and hypothalamus, which have been suggested to be involved in homeostatic functions including reproduction. First, we found gpr54-2 mRNA expression in nucleus preopticus pars magnocellularis and demonstrated that vasotocin and isotocin (Vasopressin and Oxytocin ortholog, respectively) neurons express gpr54-2 by dual in situ hybridization. Given that kisspeptin administration increases serum oxytocin and vasopressin concentration in mammals, the present finding are likely to be vertebrate-wide phenomenon, although direct regulation has not yet been demonstrated in mammals. We then analyzed co-expression of kisspeptin receptors in three types of GnRH neurons. It was clearly demonstrated that gpr54-expressing cells were located adjacent to GnRH1 neurons, although they were not GnRH1 neurons themselves. In contrast, there was no gpr54-expressing cell in the vicinities of neuromodulatory GnRH2 or GnRH3 neurons. From these results, we suggest that medaka kisspeptin neurons directly regulate some behavioral and neuroendocrine functions via vasotocin/isotocin neurons, whereas they do not regulate hypophysiotropic GnRH1 neurons at least in a direct manner. Thus, direct kisspeptin regulation of GnRH1 neurons proposed in mammals may not be the universal feature of vertebrate kisspeptin system in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.