We investigated the potential damage inflicted on erythrocytes by acoustic radiation force when the cells are concentrated by a 500-kHz ultrasonic standing wave at the pressure node. The extent of the damage was estimated from the concentrations of potassium ions, iron complexes, and lactate dehydrogenase released from the cells. After 2 min of ultrasound irradiation at 12.8 mJ/m3, the cells concentrated on the pressure node, with a cell distribution half-width of 138 microns; no significant release of intracellular components was detected, even after 15 min of irradiation. The results indicate that even small ions like potassium are not released as a result of ultrasound irradiation on cell membranes without cavitation, and they demonstrate the potential use of acoustic radiation force for concentrating living cells in biomedical applications.
A new series of methyltrialkylammonium salts with an alkyl chain length (n) longer than the conventional methyltridodecylammonium (MTDDA, n = 12) has been developed, and these materials were examined for use as the ion-sensing component (ligand) in anion-selective electrodes (ISEs). Syntheses of the higher ammoniums with n = 16, 18, and 20 were carried out. In combination with an alcoholic plasticizer, the ammoniums with n = 12, 16, and 18 led to ISEs with fundamental characteristics, such as slope sensitivity, impedance, and time response, that were sufficient for practical applications. Compared with the conventional MTDDA, the ISEs based on the ligands of n = 16 and 18 showed marked improvement in chloride selectivity over both lipophilic and hydrophilic anions, deviating from the Hofmeister regime in some cases. Taking perchlorate as an example, the magnitude of the improvement was a factor of 20 for n = 16 and 15 for n = 18. When the new ISEs were applied to chloride analysis in blood serum, they improved the accuracy by a factor of 2-6. Therefore, the methyltrialkylammonium salts with alkyl chain lengths of 16 and 18 offer definite advantages over the conventional alternative and are strong candidates to become the standard compounds for use in future chloride ISEs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.