The Fukushima nuclear accident released radioactive materials into the environment over the entire Northern Hemisphere in March 2011, and the Japanese government is spending large amounts of money to clean up the contaminated residential areas and agricultural fields. However, we still do not know the exact physical and chemical properties of the radioactive materials. This study directly observed spherical Cs-bearing particles emitted during a relatively early stage (March 14–15) of the accident. In contrast to the Cs-bearing radioactive materials that are currently assumed, these particles are larger, contain Fe, Zn, and Cs, and are water insoluble. Our simulation indicates that the spherical Cs-bearing particles mainly fell onto the ground by dry deposition. The finding of the spherical Cs particles will be a key to understand the processes of the accident and to accurately evaluate the health impacts and the residence time in the environment.
The elements Fe, Zn, and Pb were also present. It has since been reported that very similar micron-scale spherical particles have been found 20 km northwest and 3 km south of the F1NPS (Satou et al., 2016; Furuki et al., 2017). Similar particles were isolated from dust on nonwoven fabric cloth and needles of Japanese cedar (Yamaguchi et al., 2016; Kogure et al., 2016). This revealed that such Cs-bearing particles were widely dispersed within the Fukushima region. Although their origin could be attributable to any of the various release events that occurred at the F1NPS, the exact source of the radionuclides is unclear. In this study, roadside soil and dust samples from the immediate vicinity of the F1NPS were analyzed using scanning electron microscopy (SEM), EDS, synchrotron radiation micro-beam X-ray fluorescence (SR-m-XRF) analysis, and gamma spectrometry, with the aim of attributing sources to them. MATERIALS AND METHODS Sampling location Soil and dust samples were collected within the highly
Synchrotron radiation (SR) X-ray microbeam analyses revealed the detailed chemical nature of radioactive aerosol microparticles emitted during the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, resulting in better understanding of what occurred in the plant during the early stages of the accident. Three spherical microparticles (∼2 μm, diameter) containing radioactive Cs were found in aerosol samples collected on March 14th and 15th, 2011, in Tsukuba, 172 km southwest of the FDNPP. SR-μ-X-ray fluorescence analysis detected the following 10 heavy elements in all three particles: Fe, Zn, Rb, Zr, Mo, Sn, Sb, Te, Cs, and Ba. In addition, U was found for the first time in two of the particles, further confirmed by U L-edge X-ray absorption near-edge structure (XANES) spectra, implying that U fuel and its fission products were contained in these particles along with radioactive Cs. These results strongly suggest that the FDNPP was damaged sufficiently to emit U fuel and fission products outside the containment vessel as aerosol particles. SR-μ-XANES spectra of Fe, Zn, Mo, and Sn K-edges for the individual particles revealed that they were present at high oxidation states, i.e., Fe(3+), Zn(2+), Mo(6+), and Sn(4+) in the glass matrix, confirmed by SR-μ-X-ray diffraction analysis. These radioactive materials in a glassy state may remain in the environment longer than those emitted as water-soluble radioactive Cs aerosol particles.
Global nuclear weapons tests fallout of 137Cs in the northern hemisphere has been documented in the UNSCEAR (United Nations Scientific Committee on the Effect of Atomic Radiation) reports. However, many questions have arisen during the past three to four decades; e.g. the water column inventory of 137Cs in the North Pacific Ocean was two to three time higher than the cumulative decay corrected fallout at the same latitude as stated in the UNSCEAR reports. Here we show more precise spatial distribution of global 137Cs fallout primarily on the basis of global measurements in rain, seawater and soil, as data from 10 degrees x 10 degrees grids. A typical feature of geographical distribution is that two high global 137Cs fallout areas exist in the northern hemisphere, where the highest 137Cs fallout was observed in the globe. These areas correspond to crossovers of areas where larger precipitation amounts were expected and where higher stratosphere-troposphere exchange was expected. Our new estimate of 765 +/- 79 PBq as global 137Cs fallout for the northern hemisphere is 1.4 times higher than that of 545 PBq in the UNSCEAR reports.
A large quantity of radionuclides was released by the Fukushima Daiichi Nuclear Power Plant accident in March 2011, and those deposited on ground and vegetation could return to the atmosphere through resuspension processes. Although the resuspension has been proposed to occur with wind blow, biomass burning, ecosystem activities, etc., the dominant process in contaminated areas of Fukushima is not fully understood. We have examined the resuspension process of radiocesium ( 134,137 Cs) based on long-term measurements of the atmospheric concentration of radiocesium activity (the radiocesium concentration) at four sites in the contaminated areas of Fukushima as well as the aerosol characteristic observations by scanning electron microscopy (SEM) and the measurement of the biomass burning tracer, levoglucosan. The radiocesium concentrations at all sites showed a similar seasonal variation: low from winter to early spring and high from late spring to early autumn. In late spring, they showed positive peaks that coincided with the wind speed peaks. However, in summer and autumn, they were correlated positively with atmospheric temperature but negatively with wind speed. These results differed from previous studies based on data at urban sites. The difference of radiocesium concentrations at two sites, which are located within a 1 km range but have different degrees of surface contamination, was large from winter to late spring and small in summer and autumn, indicating that resuspension occurs locally and/or that atmospheric radiocesium was not well mixed in winter/spring, and it was opposite in summer/autumn. These results suggest that the resuspension processes and the host particles of the radiocesium resuspension changed seasonally. The SEM analyses showed that the dominant coarse particles in summer and autumn were organic ones, such as pollen, spores, and microorganisms. Biological activities in forest ecosystems can contribute considerably to the radiocesium resuspension in these seasons. During winter and spring, soil, mineral, and vegetation debris were predominant coarse particles in the atmosphere, and the radiocesium resuspension in these seasons can be attributed to the wind blow of these particles. Any proofs that biomass (Continued on next page)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.