Beef from Japanese Black cattle (Japanese Wagyu) is renowned for its flavor characteristics. To clarify the key metabolites contributing to this rich and sweet aroma of beef, an omics analysis combined with GC-olfactometry (GC-O) and metabolomics analysis with gas chromatography–mass spectrometry (GC-MS) were applied. GC-O analysis identified 39 odor-active odorants from the volatile fraction of boiled beef distilled by solvent-assisted flavor evaporation. Eight odorants predicted to contribute to Wagyu beef aroma were compared between Japanese Black cattle and Holstein cattle using a stable isotope dilution assay with GC–tandem quadrupole mass spectrometry. By correlating the sensory evaluation values of retronasal aroma, γ-hexalactone, γ-decalactone, and γ-undecalactone showed a high correlation with the Wagyu beef aroma. Metabolomics data revealed a high correlation between the amounts of odorants and multiple metabolites, such as glutamine, decanoic acid, lactic acid, and phosphoric acid. These results provide useful information for assessing the aroma and quality of beef.
The meat from Japanese Black cattle (Japanese Wagyu) is finely marbled and exhibits a rich and sweet aroma known as Wagyu beef aroma. To clarify the key metabolites involved in the aroma, we analyzed the correlation between lactone and lipid composition in Japanese Black cattle. Using gas chromatography-olfactometry, we identified 39 characteristic odorants of the intermuscular fat. Seven characteristic lactones considered to be involved in Wagyu beef aroma were quantified and compared in the marbled area and intermuscular fat using a stable isotope dilution assay. Among them, γ-hexalactone was the only lactone whose level was significantly higher in the marbled area. To explore the lipid species involved in lactone formation, we analyzed samples with different aroma characteristics. Liquid chromatography-mass spectrometry revealed eight lipid classes and showed significant differences in triacylglycerides (TAGs). To determine the molecular species of TAGs, we performed high-performance liquid chromatography analysis and identified 14 TAG species. However, these analyses showed that seven lactones had a low correlation with the TAGs. However, γ-hexalactone showed a positive correlation with linoleic acid. This study suggests that lipid composition affects the characteristic lactone profile involved in the Wagyu beef aroma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.