BackgroundCandida albicans is a dimorphic fungus that is part of the commensal microbial flora of the oral cavity. When the host immune defenses are impaired or when the normal microbial flora is disturbed, C. albicans triggers recurrent infections of the oral mucosa and tongue. Recently, we produced NOD/SCID.e2f1-/- mice that show hyposalivation, decrease of salivary protein flow, lack IgA and IgG in saliva, and have decreased NK cells. Our objective was to characterize C. albicans infection and biofilm formation in mice.MethodsNOD/SCID.e2f1-/- mice were used as an animal model for C. albicans infection. C. albicans yeast and hyphal forms solutions were introduced in the oral cavity after disinfection by Chlorhexidine.ResultsThe numbers of C. albicans colonized and decreased in a time-dependent manner in NOD/SCID.e2f1+/+ after inoculation. However, the colonization levels were higher in NOD/SCID.e2f1+/+ than NOD/SCID.e2f1-/- mice. In the mice fed 1% sucrose water before inoculation, C. albicans sample was highly contaminated by indigenous microorganisms in the oral cavity; and was not in the mice fed no sucrose water. The colonization of C. albicans was not influenced by the contamination of indigenous microorganisms. The hyphal form of C. albicans restricted the restoration of indigenous microorganisms. The decreased saliva in NOD/SCID.e2f1-/- did not increase the colonization of C. albicans in comparison to NOD/SCID.e2f1+/+ mice. We suggest that the receptor in saliva to C. albicans may not be sufficiently provided in the oral cavity of NOD/SCID.e2f1-/- mice.ConclusionThe saliva protein flow may be very important for C. albicans initial colonization, where the indigenous microorganisms do not affect colonization in the oral cavity.
Streptococcus mutans releases membrane vesicles (MVs) and induces MV-dependent biofilm formation. Glucosyltransferases (Gtfs) are bound to MVs and contribute to the adhesion and glucans-dependent biofilm formation of early adherent bacteria on the tooth surface. The biofilm formation of S. mutans may be controlled depending on whether the initial pH tends to be acidic or alkaline. In this study, the characteristics and effects of MVs extracted from various conditions {(initial pH 6.0 and 8.0 media prepared with lactic acid (LA) and acetic acid (AA), and with NaOH (NO), respectively)} on the biofilm formation of S. mutans and early adherent bacteria were investigated. The quantitative changes in glucans between primary pH 6.0 and 8.0 conditions were observed, associated with different activities affecting MV-dependent biofilm formation. The decreased amount of Gtfs on MVs under the initial pH 6.0 conditions strongly guided low levels of MV-dependent biofilm formation. However, in the initial pH 6.0 and 8.0 solutions prepared with AA and NO, the MVs in the biofilm appeared to be formed by the expression of glucans and/or extracellular DNA. These results suggest that the environmental pH conditions established by acid and alkaline factors determine the differences in the local pathogenic activities of biofilm development in the oral cavity.
Dandy-Walker syndrome (DWS) is congenital disease characterized by hypoplasia of the cerebellum, the formation of cysts that communicate with the fourth ventricle of the posterior cranial fossa, and hydrocephalus. In addition to various other complications, cleft lip/palate, facial retrognathia, a high-arched palate, and maldentition occur at an increased frequency in patients with DWS. However, few studies have reported the dental manifestations of DWS. Herein, we report the clinical manifestations, oral findings, and dental management of a DWS patient who was treated under general anesthesia. Poor oral hygiene, gingivitis, and several congenital dental abnormalities (e.g., generalized microdontia, conical tooth, transposition, and congenitally missing teeth) were observed. This report is the first to describe the oral findings and dental treatment of DWS. Our findings emphasize the importance of a multidisciplinary approach in the diagnosis and treatment of DWS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.