We established a straightforward murine model of oropharyngeal candidiasis. Mice were immunosuppressed with cortisone acetate, anesthetized, and then inoculated by placing cotton wool balls saturated with Candida albicans sublingually for 2 h. A prolonged, reproducible infection was induced. This model may be useful for antifungal screening or pathogenesis studies.
ROS1
gene rearrangement was observed in around 1–2 % of NSCLC patients and in several other cancers such as cholangiocarcinoma, glioblastoma, or colorectal cancer. Crizotinib, an ALK/ROS1/MET inhibitor, is highly effective against
ROS1
-rearranged lung cancer and is used in clinic. However, crizotinib resistance is an emerging issue, and several resistance mechanisms, such as secondary kinase-domain mutations (e.g., ROS1-G2032R) have been identified in crizotinib-refractory patients. Here we characterize a new selective ROS1/NTRK inhibitor, DS-6051b, in preclinical models of ROS1- or NTRK-rearranged cancers. DS-6051b induces dramatic growth inhibition of both wild type and G2032R mutant ROS1–rearranged cancers or NTRK-rearranged cancers
in vitro
and
in vivo
. Here we report that DS-6051b is effective in treating ROS1- or NTRK-rearranged cancer in preclinical models, including crizotinib-resistant ROS1 positive cancer with secondary kinase domain mutations especially G2032R mutation which is highly resistant to crizotinib as well as lorlatinib and entrectinib, next generation ROS1 inhibitors.
Purpose: HER3 is a compelling target for cancer treatment; however, no HER3-targeted therapy is currently clinically available. Here, we produced U3-1402, an anti-HER3 antibody-drug conjugate with a topoisomerase I inhibitor exatecan derivative (DXd), and systematically investigated its targeted drug delivery potential and antitumor activity in preclinical models.Experimental Design: In vitro pharmacologic activities and the mechanisms of action of U3-1402 were assessed in several human cancer cell lines. Antitumor activity of U3-1402 was evaluated in xenograft mouse models, including patientderived xenograft (PDX) models. Safety assessments were also conducted in rats and monkeys.Results: U3-1402 showed HER3-specific binding followed by highly efficient cancer cell internalization. Subsequently, U3-1402 was translocated to the lysosome and released its payload DXd. While U3-1402 was able to inhibit HER3activated signaling similar to its naked antibody patritumab, the cytotoxic activity of U3-1402 in HER3-expressing cells was predominantly mediated by released DXd through DNA damage and apoptosis induction. In xenograft mouse models, U3-1402 exhibited dose-dependent and HER3-dependent antitumor activity. Furthermore, U3-1402 exerted potent antitumor activity against PDX tumors with HER3 expression. Acceptable toxicity was noted in both rats and monkeys.Conclusions: U3-1402 demonstrated promising antitumor activity against HER3-expressing tumors with tolerable safety profiles. The activity of U3-1402 was driven by HER3mediated payload delivery via high internalization into tumor cells.
We investigated the contribution of Candida albicans ALS1, which encodes a candidal adhesin, to the pathogenesis of experimental murine oropharyngeal candidiasis. Our results indicate that the ALS1 gene product is important for the adherence of the organism to the oral mucosa during the early stage of the infection.
Invasive aspergillosis is characterized by two different types of angioinvasion. During pulmonary aspergillosis, hyphae are initially outside of the pulmonary vasculature and they invade the endothelial cell lining of the blood vessels by passing from the abluminal to the luminal surface. Some of these hyphal fragments can break off and circulate in the bloodstream. In severely immunocompromised hosts, these blood-borne hyphal fragments adhere to the luminal surface of the endothelial cells and they penetrate the endothelial cell lining of the vasculature by passing from the luminal to the abluminal surface. We have set up in vitro models of luminal and abluminal endothelial cell invasion by Aspergillus fumigatus. Luminal invasion by hyphae results in both endothelial cell damage and stimulation of tissue factor expression. Abluminal invasion causes less endothelial cell damage than luminal invasion, but greater induction of endothelial cells genes encoding cytokines, leukocyte adhesion molecules and tissue factor. These differences in the endothelial cell response to luminal versus abluminal infection may indicate significant differences in the pathogenesis of hematogenously disseminated versus locally invasive versus aspergillosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.