This paper presents the problem definition and guidelines of a set of benchmark control problems for seismically excited nonlinear buildings. Focusing on three typical steel structures, 3-, 9-and 20-story buildings designed for the SAC project for the Los Angeles, California region, the goal of this study is to provide a clear basis to evaluate the efficacy of various structural control strategies. A nonlinear evaluation model has been developed that portrays the salient features of the structural system. Evaluation criteria and control constraints are presented for the design problems. The task of each participant in this benchmark study is to define (including sensors and control algorithms), evaluate and report on their proposed control strategies. These strategies may be either passive, active, semi-active or a combination thereof. The benchmark control problems will then facilitate direct comparison of the relative merits of the various control strategies. To illustrate some of the design challenges, a sample control strategy employing active control with a linear quadratic Gaussian (LQG) control algorithm is applied to the 20-story structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.