A unified total synthesis of stemoamide-type alkaloids is reported. Our synthetic approach features the chemoselective convergent assembly of five-membered building blocks via stemoamide as the common precursor to tetracyclic natural products. The synthesis consists of two successive coupling reactions of the three five-membered building blocks. The first coupling reaction is the vinylogous Michael addition/reduction sequence, which enables the gram-scale synthesis of stemoamide. The second coupling reaction is a chemoselective nucleophilic addition to stemoamide. While the lactone-selective nucleophilic addition to stemoamide affords saxorumamide and isosaxorumamide, the lactam-selective reductive nucleophilic addition leads to the formation of stemonine. Both chemoselective nucleophilic additions enable direct modification of stemoamide, resulting in highly concise and efficient total syntheses of the stemoamide-type alkaloids.
The collective synthesis of pentacyclic stemoamide-type alkaloids is recognized as a daunting task despite high demand for a comprehensive biological profiling of these natural products. In this Letter, we report a unified synthesis of seven pentacyclic alkaloids and two unnatural derivatives. The keys to success are (1) the chemoselective assembly of four five-membered building blocks, (2) the direct oxidation of pyrrolidine natural products to pyrrole derivatives, and (3) the stereodivergent construction of totally E- or Z-substituted butenolides.
A way to utilize eggshells is desired because most of the eggshell waste is disposed of in landfills. Despite eggshells having attractive features such as a thermodynamically stable porous crystalline structure, their effective utilization as a functional material has yet to be demonstrated. Herein, we developed an alkali-stable column packing material for reversed-phase preparative high-performance liquid chromatography (HPLC) based on eggshells. Nanocrystals and biopolymers present on eggshell powder were removed by surface treatment with buffered ethylenediaminetetraacetic acid (EDTA) and sodium hypochlorite solutions, resulting in bare calcium carbonate with a uniform porous surface. The obtained particles were modified with poly(maleic acid-alt-1-octadecene) (PMAcO) having hydrophobic alkyl chains and anionic carboxylate groups. The prepared PMAcO-modified eggshell-based material was applied to an HPLC column, and its performance is evaluated. The column succeeded in the separation of alkylbenzenes, steroids, and diastereomers. It was also used for the separation of basic tricyclic antidepressants in an alkaline mobile phase, showing excellent retention capacity and alkali stability. This study demonstrates the potential of eggshell utilization, providing not only a practical stationary phase for HPLC but also a solution for recycling calcium carbonate-based biomineral waste.
Our research group has been exploring a lactam strategy for the concise total synthesis of complex alkaloids. In this article, we report full details of the unified total synthesis of stemoamide-type alkaloids by chemoselective assembly of five-membered rings based on the lactam strategy. First, the concise and gram-scale synthesis of tricyclic stemoamide was achieved by vinylogous Michael addition-reduction sequence of an unsaturated γ-lactam with an unsaturated γ-lactone, followed by N-alkylation to form the seven-membered ring. From stemoamide as a common intermediate, chemoselective nucleophilic addition of unsaturated lactone derivatives provides tetracyclic natural products. While stemonine is obtained by an Ir-catalyzed lactam-selective reductive Mannich reaction, saxorumamide and isosaxorumamide are produced through the lactone-selective nucleophilic addition of the lithiated 2-silyl furan. The developed conditions for the lactam-selective nucleophilic reactions are highly general, and were found to be applicable to the total synthesis of pentacyclic stemocochinin and isostemocochinin. The strategy enables the concise and unified total synthesis of tricyclic, tetracyclic and pentacyclic stemoamide-type alkaloids within 12 steps from a commercially available compound.
The totally substituted butenolide including two tetrasubstituted olefins is a distinct structural motif seen in Stemona alkaloids, but efficient methods for its synthesis are not well developed. As an ongoing program aimed at the collective total synthesis of the stemoamide group, we report a stereodivergent method to give either (E)- or (Z)-totally substituted butenolide from the same intermediate. While the AgOTf-mediated elimination via the E1-type mechanism results in the formation of the kinetic (Z)-tetrasubstituted olefin, the subsequent TfOH-mediated isomerization gives the thermodynamic (E)-tetrasubstituted olefin. The pyrrole ring is another important structure found in Stemona alkaloids. The direct oxidation of pyrrolidine rings with MnO2 and careful purification give the pyrrole groups without isomerization of the stereocenter in the lactone group. These two methods enable us to synthesize a series of stemoamide-type alkaloids including tricyclic, tetracyclic and pentacyclic frameworks. The anti-inflammatory activities by inhibition of iNOS expression in macrophage cell line RAW264.7 indicate that the most potent anti-inflammatory compounds without cytotoxicity are protostemonines, which consist of pentacyclic frameworks including the totally substituted butenolide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.