We previously showed that HIV-1 protease inhibitors (PIs) slowed the proliferation of human myeloid leukemia cells and enhanced their differentiation in the presence of all-trans-retinoic acid. In this study, we found that PIs, including ritonavir, saquinavir, and indinavir, inhibited the growth of DU145 and PC-3 androgen-independent prostate cancer cells as measured by a clonal proliferation assay. Recent studies showed that ritonavir inhibited cytochrome P450 3A4 enzyme (CYP3A4) in liver microsomes. The CYP3A4 is involved in drug metabolism and acquisition of drug resistance. To clarify the drug interaction between ritonavir and other anticancer drugs, we cultured DU145 cells with docetaxel either alone or in combination with ritonavir. Ritonavir enhanced the antiproliferative and proapoptotic effects of docetaxel in the hormonally independent DU145 prostate cancer cells in vitro as measured by the clonogenic soft agar assay and detection of the activated form of caspase-3 and cleavage of poly(ADP-ribose) polymerase using Western blot analysis. Real-time PCR showed that docetaxel induced the expression of CYP3A4 at the transcriptional level, and ritonavir (10 ؊5 mol/L) completely blocked this induction. An ELISA-based assay also showed that ritonavir inhibited DNA binding activity of nuclear factor B (NFB) in DU145 cells, which is a contributor to drug resistance in cancer cells. Furthermore, combination treatment of docetaxel and ritonavir dramatically inhibited the growth of DU145 cells present as tumor xenografts in BNX nude mice compared with either drug alone. Importantly, docetaxel induced expression of CYP3A4 in DU145 xenografts, and ritonavir completely blocked this induction. Ritonavir also inhibited NFB DNA binding activity in DU145 xenografts. Extensive histologic analyses of the liver, spleen, kidneys, bone marrow, skin, and subcutaneous fat pads from these mice showed no abnormalities. In summary, combination therapy of ritonavir and anticancer drugs holds promise for the treatment of individuals with advanced, drug resistant cancers.
C/EBPε is a recently cloned member of the C/EBP family of transcriptional factors. Previous studies demonstrated that the expression of this gene is tightly regulated in a tissue specific manner; it is expressed exclusively in myeloid cells. C/EBPε-deficient mice developed normally but failed to generate functional neutrophils and eosinophils, and these mice died of opportunistic infections suggesting that C/EBPε may play a central role in myeloid differentiation. To identify myelomonocytic genes regulated by the C/EBPε gene, we performed representational difference analysis (RDA), a polymerase chain reaction (PCR)-based subtractive hybridization using neutrophils and macrophages from wild-type and C/EBPε knockout mice. We identified a set of differentially expressed genes, including chemokines specific to myelomonocytic cells. Several novel genes were identified that were differentially expressed in normal myelomonocytic cells. Taken together, we have found several genes whose expression might be enhanced by C/EBPε.
C/EBPε is a recently cloned member of the C/EBP family of transcriptional factors. Previous studies demonstrated that the expression of this gene is tightly regulated in a tissue specific manner; it is expressed exclusively in myeloid cells. C/EBPε-deficient mice developed normally but failed to generate functional neutrophils and eosinophils, and these mice died of opportunistic infections suggesting that C/EBPε may play a central role in myeloid differentiation. To identify myelomonocytic genes regulated by the C/EBPε gene, we performed representational difference analysis (RDA), a polymerase chain reaction (PCR)-based subtractive hybridization using neutrophils and macrophages from wild-type and C/EBPε knockout mice. We identified a set of differentially expressed genes, including chemokines specific to myelomonocytic cells. Several novel genes were identified that were differentially expressed in normal myelomonocytic cells. Taken together, we have found several genes whose expression might be enhanced by C/EBPε.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.