In plants and animals, small peptide ligands that signal in cell-cell communication have been suggested to be a crucial component of development. A bioassay of single-cell transdifferentation demonstrates that a dodecapeptide with two hydroxyproline residues is the functional product of genes from the CLE family, which includes CLAVATA3 in Arabidopsis. The dodecapeptide suppresses xylem cell development at a concentration of 10(-11) M and promotes cell division. An application, corresponding to all 26 Arabidopsis CLE protein family members, of synthetic dodecapeptides reveals two counteracting signaling pathways involved in stem cell fate.
A series of phosphonamide-based hydroxamate derivatives were synthesized, and the inhibitory activities were evaluated against various metalloproteinases in order to clarify its selectivity profile. Among the four diastereomeric isomers resulting from the chirality at the C-3 and P atoms, the compound with a (R,R)-configuration both at the C-3 position and the phosphorus atom was found to be potently active, while the other diastereomeric isomers were almost inactive. A number of (R,R)-compounds synthesized here exhibited broad spectrum activities with nanomolar K(i) values against MMP-1, -3, -9, and TACE and also showed nanomolar IC(50) values against HB-EGF shedding in a cell-based inhibition assay. The modeling study using X-ray structure of MMP-3 suggested the possible binding mode of the phosphonamide-based inhibitors.
SummaryThe LolCDE complex of Escherichia coli belongs to the ABC transporter superfamily and initiates the lipoprotein sorting to the outer membrane by catalysing their release from the inner membrane. LolC and/or LolE, membrane subunits, recognize lipoproteins anchored to the outer surface of the inner membrane, while LolD hydrolyses ATP on its inner surface. We report here that ligand-bound LolCDE can be purified from the inner membrane in the absence of ATP.
The vertebrate CNS is composed of a variety of longitudinal axonal tracts extending rostrally and caudally. Although recent studies have demonstrated that chemoattraction and chemorepulsion play key roles in axon guidance along the circumferential axis in the neural tube of the vertebrate, mechanisms of axonal elongation along the longitudinal axis, and most importantly, what determines rostrocaudal polarity of axonal growth, remains unknown. Here, we examined the mechanism that guides midbrain dopaminergic axons rostrally, using flat whole-mount preparations of embryonic rat brain both in vivo and in vitro. At embryonic day 11 (E11) and early stage E12, dopaminergic neurons in the ventral midbrain extended short axons dorsally. By middle stage E12, these axons had increased in number, some deflecting rostrally and others caudally. At E13, almost all axons showed rostrally oriented growth heading toward the forebrain targets. In in vitro whole-mount preparations prepared from an E12 embryo and cultured for 24 hr, these axons showed rostrally oriented growth, but when they were forced to grow on substratum of reversed rostrocaudal polarity, they turned abruptly and grew following the polarity of the reversed midbrain substratum. These results suggest that local directional cues in the midbrain guide these axons rostrally and support the idea that substratum-associated polarized cues play an important role in axon guidance along the longitudinal axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.