Abstract. Given a large number of taxi trajectories, we would like to find interesting and unexpected patterns from the data. How can we summarize the major trends, and how can we spot anomalies? The analysis of trajectories has been an issue of considerable interest with many applications such as tracking trails of migrating animals and predicting the path of hurricanes. Several recent works propose methods on clustering and indexing trajectories data. However, these approaches are not especially well suited to pattern discovery with respect to the dynamics of social and economic behavior. To further analyze a huge collection of taxi trajectories, we develop a novel method, called F-Trail, which allows us to find meaningful patterns and anomalies. Our approach has the following advantages: (a) it is fast, and scales linearly on the input size, (b) it is effective, leading to novel discoveries, and surprising outliers. We demonstrate the effectiveness of our approach, by performing experiments on real taxi trajectories. In fact, F-Trail does produce concise, informative and interesting patterns.
Given a large collection of co-evolving multiple time-series, which contains an unknown number of patterns of different durations, how can we efficiently and effectively find typical patterns and the points of variation? How can we statistically summarize all the sequences, and achieve a meaningful segmentation?In this paper we present AUTOPLAIT, a fully automatic mining algorithm for co-evolving time sequences. Our method has the following properties: (a) effectiveness: it operates on large collections of time-series, and finds similar segment groups that agree with human intuition; (b) scalability: it is linear with the input size, and thus scales up very well; and (c) AUTOPLAIT is parameter-free, and requires no user intervention, no prior training, and no parameter tuning.Extensive experiments on 67GB of real datasets demonstrate that AUTOPLAIT does indeed detect meaningful patterns correctly, and it outperforms state-of-the-art competitors as regards accuracy and speed: AUTOPLAIT achieves near-perfect, over 95% precision and recall, and it is up to 472 times faster than its competitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.