Objective-We have established a hereditary postprandial hypertriglyceridemic (PHT) rabbit. The present study was designed to define whether this rabbit model represents both insulin resistance and central obesity. Methods and Results-Body weight, abdominal circumference, visceral fat weight, and glucose tolerance were compared between PHT and Japanese white (JW) rabbit. Plasma levels of triglycerides (TG), total cholesterol (TC), glucose, and insulin were measured before and after feeding. Abdominal circumference of PHT rabbit was larger than that of JW rabbit, with no difference in body mass index. Visceral fat accumulation was noted as obvious in mesenterium, retroperitoneal space, and epididymal area. Plasma TG and TC levels were high preprandially and markedly increased postprandially in PHT rabbit compared with JW rabbit. Although plasma glucose levels were comparable in both groups, plasma insulin levels were elevated in PHT rabbit. Glucose tolerance tests indicated that plasma insulin levels in PHT rabbit were consistently higher than in JW rabbit. A positive correlation was observed between plasma insulin levels and visceral fat weight in PHT rabbit. underlying milieu of atherosclerosis. 1-3 Recent US statistics show that metabolic syndrome affects Ϸ1 in 4 adults and that the incidence of metabolic syndrome is sharply increasing with the growing population of obese individuals with visceral adiposity due partly to overeating, lack of physical exercise, and a high-fat diet. 4 In light of its clinical significance, development of therapeutic remedies for metabolic syndrome is of prime importance and therefore the establishment of an animal model is urgently required. Conclusions-PHTMetabolic syndrome is characterized by a clustering of several cardiovascular risk factors in a single individual, including dyslipidemia, centrally distributed adiposity, hypertension, and syndromes of glucose intolerance. Although multiple disorders were partly modeled by glucose intolerance in heritable rodent models, 5,6 lipid metabolism differs considerably between humans and rodents (eg, lack of cholesteryl ester transfer protein, differences in the apoB synthesis pathway). 7-9 To apply contemporary approaches using genetically engineered mice or translucent zebrafish, genetic phenotypes of metabolic syndrome remain too complex.An animal model of familiar hypercholesterolemia is unique in Watanabe heritable hyperlipidemic (WHHL) rabbit, because it closely resembles cholesterol metabolism in humans. We successfully segregated a hypertriglyceridemic type of WHHL (WHHL-TGH) rabbit, and then established a postprandial hypertriglyceridemic (PHT) rabbit from a cross between a normal Japanese white (JW) rabbit and a WHHL-TGH rabbit. 10 The present study was aimed to clarify the levels of central obesity and glucose intolerance in our newly established animal model of human disease. Materials and Methods AnimalsMale 8-to 16-month-old PHT rabbits (number of rabbits: 19) and 10-to 17-month-old JW rabbits (number of rabbits: 6; Shira...
Inhibitors of microsomal triglyceride transfer protein (MTP) expressed in the liver and small intestine are potential candidates for lipid-lowering agents. However, inhibition of hepatic MTP could lead to significant safety issues such as fatty liver disease. To develop a specific inhibitor of intestinal MTP, JTT-130, was designed to be rapidly hydrolyzed in the absorption process. Here, we describe JTT-130, an intestine-specific MTP inhibitor, and evaluate its pharmacological properties. In in vitro metabolic stability tests, JTT-130 was readily hydrolyzed during incubation with liver S9 from humans, hamsters, and rats. In an in vitro triglyceride (TG) transfer assay with human intestinal MTP, JTT-130 potently inhibited TG transfer activity with an IC 50 value of 0.83 nM. When orally administered to hamsters, JTT-130 significantly suppressed an increase in chylomicron-TG after olive oil loading at 0.3 mg/kg and above but did not inhibit TG secretion from the liver at doses of up to 1000 mg/kg, indicating an inhibitory action highly specific for the small intestine. In rats orally administered [14 C]triolein, JTT-130 potently suppressed an increase in blood 14 C radioactivity and increased 14 C radioactivity in the upper small intestine and the intestinal lumen. In hyperlipidemic hamsters fed a high-fat and high-cholesterol diet, repeated dosing with JTT-130 for 2 weeks reduced TG and cholesterol levels in the plasma and TG content in the liver. These results indicated that JTT-130 is a potent inhibitor specific to intestinal MTP and suggested that JTT-130 would be a useful compound for the treatment of dyslipidemia without inducing hepatotoxicity.
The microsomal triglyceride transfer protein (MTP) takes part in the mobilization and secretion of triglyceride-rich lipoproteins from enterocytes and hepatocytes. In this study, we investigated the effects of diethyl-2-({3-dimethylcarbamoyl-4-[(4Ј-trifluoromethylbiphenyl-2-carbonyl) amino] phenyl}acetyloxymethyl)-2-phenylmalonate (JTT-130), a novel intestine-specific MTP inhibitor, on food intake, gastric emptying, and gut peptides using Sprague-Dawley rats fed 3.1% fat, 13% fat, or 35% fat diets. JTT-130 treatment suppressed cumulative food intake and gastric emptying in rats fed a 35% fat diet, but not a 3.1% fat diet. In rats fed a 13% fat diet, JTT-130 treatment decreased cumulative food intake but not gastric emptying. In addition, treatment with orlistat, a lipase inhibitor, completely abolished the reduction of food intake and gastric emptying by JTT-130 in rats fed a 35% fat diet. On the other hand, JTT-130 treatment increased the plasma concentrations of gut peptides, peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) but not cholecystokinin, in the portal vein in rats fed a 35% fat diet. These elevations in PYY and GLP-1 were also abolished by treatment with orlistat. Furthermore, JTT-130 treatment in rats fed a 35% fat diet increased the contents of triglycerides and free fatty acids in the intestinal lumen, which might contribute to the elevation of PYY and GLP-1 levels. The present findings indicate that JTT-130 causes satiety responses, decreased food intake, and gastric emptying in a dietary fat-dependent manner, with enhanced production of gut peptides such as PYY and GLP-1 from the intestine.
The spontaneously diabetic torii (SDT) fatty rat is a new model of type 2 diabetes showing overt obesity, hyperglycemia and hyperlipidemia. With early onset of diabetes mellitus, diabetic microvascular complications, including nephropathy, peripheral neuropathy and retinopathy, are observed at young ages. In the present study, blood glucose levels of female SDT fatty rats were controlled with phlorizin, a non-selective SGLT inhibitor, to examine whether and how these complications are caused by hyperglycemia. Phlorizin treatment adequately controlled plasma glucose levels during the experiment. At 29 weeks of age, urinary albumin excretion considerably increased in SDT fatty rats. Glomerulosclerosis and tubular pathological findings also indicate diabetic nephropathy. These renal parameters tended to decrease with phlorizin; however, effects were partial. Sciatic nerve conduction velocities were significantly delayed in SDT fatty rats compared with Sprague-Dawley (SD) rats. Intraepidermal nerve fiber density, an indicator of subclinical small nerve fiber neuropathy, significantly decreased in SDT fatty rats. Retinal dysfunction (prolongation of peak latency for oscillatory potential in electroretinograms) and histopathological eye abnormalities, including retinal folding and mature cataracts were also observed. Both nerve and eye disorders were prevented with phlorizin. These findings indicate that severe hyperglycemia mainly causes diabetic complications in SDT fatty rats. However, other factors, such as hyperlipidemia and hypertension, may affect diabetic nephropathy. These characteristics of diabetic complications will become helpful in evaluating new drugs for diabetic complications using SDT fatty rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.