We performed laboratory experiments of Rayleigh-Bénard convection with liquid gallium under various intensities of a uniform imposed horizontal magnetic field. An ultrasonic velocity profiling method was used to visualize the spatiotemporal structure of the flows with simultaneous monitoring of the temperature fluctuations in the liquid gallium layer. The explored Rayleigh numbers Ra range from the critical value for onset of convection to 10 5 ; the Chandrasekhar number Q covers values up to 1100. A regime diagram of the convection patterns was established in relation to the Ra and Q values for a square vessel with aspect ratio 5. We identified five flow regimes: (I) a fluctuating large-scale pattern without rolls, (II) weakly constrained rolls with fluctuations, (III) a continuous oscillation of rolls, (IV) repeated roll number transitions with random reversals of the flow direction, and (V) steady two-dimensional (2D) rolls. These flow regimes are classified by the Ra/Q values, the ratio of the buoyancy to the Lorentz force. Power spectra from the temperature time series indicate that regimes I and II have the features of developed turbulence, while the other regimes do not. The region of steady 2D rolls (Busse balloon) extends to high Ra values in the present setting by a horizontal magnetic field and regime V is located inside the Busse balloon. Concerning the instabilities of the steady 2D rolls, regime III is the traveling wave convection developed from the oscillatory instability. Regime IV can be regarded as a state of phase turbulence, which is induced by intermittent occurrences of the skewed-varicose instability.
We report a finding of spontaneous flow reversals of roll-like patterns in liquid gallium Rayleigh-Bénard convection. The vessel has a square geometry with an aspect ratio of 5, and a horizontal magnetic field is applied to align the rolls. The flow patterns were visualized by ultrasonic velocity measurements, and the processes of the reversal were clearly observed. The basic flow pattern observed in the vessel is a four-roll structure with its axis parallel to the magnetic field. Emergence of a new circulation at a corner of the vessel causes flow reversal with reorganization of the whole pattern. The flow keeps relatively steady four-roll structure for most of the duration, while the reversal of it is over in a short time. The reversals of the flow occur randomly with the interval time between reversals being much longer than the circulation time.
This investigation observed large-scale flows in liquid gallium and the oscillation with Rayleigh-Bénard convection. An ultrasonic velocity profiling method was used to visualize the spatiotemporal flow pattern of the liquid gallium in a horizontally long rectangular vessel. Measuring the horizontal component of the flow velocity at several lines, an organized roll-like structure with four cells was observed in the 1 ϫ 10 4 -2ϫ 10 5 range of Rayleigh numbers, and the rolls show clear oscillatory behavior. The long-term fluctuations in temperature observed in point measurements correspond to the oscillations of the organized roll structure. This flow structure can be interpreted as the continuous development of the oscillatory instability of twodimensional roll convection that is theoretically investigated around the critical Rayleigh number. Both the velocity of the large-scale flows and the frequency of the oscillation increase proportional to the square root of the Rayleigh number. This indicates that the oscillation is closely related to the circulation of large-scale flow.
[1] For supplying massive liquid water to the outflow channels, igneous melting of the permafrost layer could have played a significant role. We numerically simulate the melting process of the permafrost layer induced by magmatic intrusion. The point of our simulation is incorporation of thermal convection in porous media, which has not been modeled well in previous studies of the melting of the permafrost. Our results show that convection in the melted zone causes drastic change in heat transfer, which results in focusing in the growth of the melt region and enhancement of water generation. The resulting melt zone extends vertically up just next to the surface, like a plume with a single column (mushroom structure). The volume of meltwater is considerably more than that expected in the conduction case. These characteristics suggest that a substantial amount of water may exist very near the surface. In response to compaction, segregated liquid water may have erupted out of the ground to form the fluvial features. Such an event would certainly be accompanied by surface destruction, which we can see as chaotic terrain. We propose a consistent scenario of forming surface features around the outflow channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.