Some strands of composite fiber-optic ground wire (OPGW) are sometimes melted and broken by high-energy lightning strikes. DC arc tests simulating lightning strikes have been performed to obtain the melting and breaking characteristics of OPGW strands. The tests have to be performed under many conditions concerning the arc (e.g., current, duration, polarity, gap length) and the OPGW (e.g., size, type, and number of strands) to clarify the melting and breaking characteristics of the strands. In this paper, the calculations regarding the melting characteristics of strands are performed considering the transferred heat and its area from the arc to the strands under the aforementioned conditions. The melting characteristics of strands are calculated with an arc current of 1-100 kA considering the measured current of actual lightning. The calculation results of the strand melting duration depending on arc current show good agreement with the experimental values obtained in dc arc tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.