The guanine nucleotide exchange factor (GEF) Son of Sevenless (SOS) is a key Ras activator that is autoinhibited in the cytosol and activates upon membrane recruitment. Autoinhibition release involves structural rearrangements of the protein at the membrane and thus introduces a delay between initial recruitment and activation. In this study, we designed a single-molecule assay to resolve the time between initial receptor-mediated membrane recruitment and the initiation of GEF activity of individual SOS molecules on microarrays of Ras-functionalized supported membranes. The rise-and-fall shape of the measured SOS activation time distribution and the long mean time scale to activation (~50 seconds) establish a basis for kinetic proofreading in the receptor-mediated activation of Ras. We further demonstrate that this kinetic proofreading is modulated by the LAT (linker for activation of T cells)–Grb2–SOS phosphotyrosine-driven phase transition at the membrane.
U1 snRNP binds to the 5′ exon-intron junction of pre-mRNA and thus plays a
crucial role at an early stage of pre-mRNA splicing. We present two crystal
structures of engineered U1 sub-structures, which together reveal at atomic
resolution an almost complete network of protein–protein and RNA-protein
interactions within U1 snRNP, and show how the 5′ splice site of pre-mRNA is
recognised by U1 snRNP. The zinc-finger of U1-C interacts with the duplex between
pre-mRNA and the 5′-end of U1 snRNA. The binding of the RNA duplex is
stabilized by hydrogen bonds and electrostatic interactions between U1-C and the RNA
backbone around the splice junction but U1-C makes no base-specific contacts with
pre-mRNA. The structure, together with RNA binding assays, shows that the selection
of 5′-splice site nucleotides by U1 snRNP is achieved predominantly through
basepairing with U1 snRNA whilst U1-C fine-tunes relative affinities of mismatched
5′-splice sites.DOI:
http://dx.doi.org/10.7554/eLife.04986.001
Raf kinases are important cancer drug targets. Paradoxically, many B-Raf inhibitors induce the activation of Raf kinases. Cryo–electron microscopy structural analysis of a phosphorylated B-Raf kinase domain dimer in complex with dimeric 14-3-3, at a resolution of ~3.9 angstroms, shows an asymmetric arrangement in which one kinase is in a canonical “active” conformation. The distal segment of the C-terminal tail of this kinase interacts with, and blocks, the active site of the cognate kinase in this asymmetric arrangement. Deletion of the C-terminal segment reduces Raf activity. The unexpected asymmetric quaternary architecture illustrates how the paradoxical activation of Raf by kinase inhibitors reflects an innate mechanism, with 14-3-3 facilitating inhibition of one kinase while maintaining activity of the other. Conformational modulation of these contacts may provide new opportunities for Raf inhibitor development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.