DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry-Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre-DECIGO first and finally DECIGO in 2024.
DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. It aims at detecting various kinds of gravitational waves between 1 mHz and 100 Hz frequently enough to open a new window of observation for gravitational wave astronomy. The pre-conceptual design of DECIGO consists of three drag-free satellites, 1000 km apart from each other, whose relative displacements are measured by a Fabry–Perot Michelson interferometer. We plan to launch DECIGO in 2024 after a long and intense development phase, including two pathfinder missions for verification of required technologies.
Abstract. Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). Assessing the relative importance of CH4 in comparison to CO2 is complicated by its shorter atmospheric lifetime, stronger warming potential, and atmospheric growth rate variations over the past decade, the causes of which are still debated. Two major difficulties in reducing uncertainties arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (top-down approach) to be 572 Tg CH4 yr−1 (range 538–593, corresponding to the minimum and maximum estimates of the ensemble), of which 357 Tg CH4 yr−1 or ~ 60 % are attributed to anthropogenic sources (range 50–65 %). This total emission is 27 Tg CH4 yr−1 larger than the value estimated for the period 2000–2009 and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for the period 2003–2012 (Saunois et al. 2016). Since 2012, global CH4 emissions have been tracking the carbon intensive scenarios developed by the Intergovernmental Panel on Climate Change (Gidden et al., 2019). Bottom-up methods suggest larger global emissions (737 Tg CH4 yr−1, range 583–880) than top-down inversion methods, mostly because of larger estimated natural emissions from sources such as natural wetlands, other inland water systems, and geological sources. However the strength of the atmospheric constraints on the top-down budget, suggest that these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric-based emissions indicates a predominance of tropical emissions (~ 65 % of the global budget,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.