A project on the development of REBa2Cu3O7−δ (REBCO) magnets for ultra-high-field magnetic resonance imaging (MRI) was started in 2013. Since REBCO-coated conductors feature high mechanical strength under tensile stress and high critical current density, use of REBCO coils would allow superconducting magnets to be made smaller and lighter than conventional ones. In addition, a conduction-cooled superconducting magnet is simpler to use than one cooled by a liquid helium bath because the operation and maintenance of the cryogenic system become simpler, without the need to handle cryogenic fluid. Superconducting magnets for MRI require homogeneous, stable magnetic fields. The homogeneity of the magnetic field is highly dependent on the coil shape and position. Moreover, in REBCO magnets, the screening-current-induced magnetic field, which changes the magnetic field distribution of the magnet, is one of the critical issues. In order to evaluate the magnetic field homogeneity and the screening-current-induced magnetic field, a 1 T model magnet and some test coils were fabricated. From an evaluation of the 1 T model magnet, it was found that the main reason for magnetic field inhomogeneity was the tolerances in the z-axis positions of the coils, and therefore, it is important to control the gap between the single pancakes. In addition, we have already demonstrated the generation of an 8.27 T central magnetic field at 10 K with a small test coil. The screening-current-induced magnetic field was 0.43 T and was predictable by using an electromagnetic field simulation program. These results were reflected in the design of a conduction-cooled 9.4 T REBCO magnet for whole-body MRI systems. The magnet was composed of six main coils and two active shield coils. The total conductor length was 581 km, and the stored energy was 293 kJ. The field inhomogeneity was 24 ppm peak to peak and 3 ppm volume-root-mean-square (VRMS) for a 500 mm diameter spherical volume (DSV). The axial and radial 5 gauss line locations were less than 5 m and 4.2 m respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.