Conspicuous calcareous coverings are present in the anterior region of 17 fossil jaws from late Cretaceous rocks of Hokkaido (Japan) and Sakhalin (U.S.S.R.). The jaws were preserved in calcareous nodules either in situ in body chambers of ammonites or in close association with identifiable ammonite conch remains. From the morphologic similarity between in situ and isolated jaws, they may be attributed to Tetragonites glabrus, Gaudryceras tenuiliratum, G. denseplicatum, G. sp., and Neophylloceras subramosum. The jaw apparatus of these species is composed of two three‐dimensional black walls of carbonate apatite, which might be a diagenetic replacement of chitinous material. The calcareous coverings in both upper and lower jaws closely resemble those of upper (rhyncholite) and lower (conchorhynch) jaws of modern Nautilus as well as rhyncholite and conchorhynch fossils in their gross morphology, microstructure, and chemical composition. Calcified remains of cephalopod jaws known as rhyncholites and conchorhynchs have been reported from late Paleozoic to Recent. The present discovery of ammonoid rhyncholites and conchorhynchs suggests that at least some previously known late Paleozoic and Mesozoic counterparts belong to the Ammonoidea. The essential similarity of jaw elements of some Late Cretaceous ammonites and modern Nautilus gives reliable information on the feeding habits of the former. The sharp and thick ammonoid rhyncholites and conchorhynchs may have had a special function for cutting up food, similar to those of Nautilus.
In a hyperbaric chamber, a living mature specimen of Nautilus pompilius withstood a hydrostatic pressure of 8.05 MPa (80.5 kg/cm2) equivalent to 785 m deep in the sea. Thereafter it was killed instantly by implosion of the shell. Before implosion, the animal reacted physiologically to increasing pressure. Therefore, the depth of 785 m can be assigned the depth limit of N. pompilius. The result bears on critical interpretations on the paleoecology and paleobiology of extinct nautiloids and ammonoids with similar shells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.